Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы динамики материальной системы

Однако вариационные принципы не позволяют непосредственно находить интегралы систем дифференциальных уравнений движения, вытекающие из теорем динамики. Но применяя эти принципы, можно построить прямые методы приближенного определения закона движения материальной системы. Об этом кратко сказано ниже при рассмотрении конкретных примеров.  [c.181]

По основному закону динамики материальной точки, справедливому для инерциальной системы отсчета, получаем  [c.500]


Силовой расчет механизмов можно выполнить различными способами. Однако в последнее время пользуются преимущественно принципом Даламбера, который формулируется так если к каждой точке материальной системы, кроме равнодействующей заданных сил и реакций связей, приложить еще силу инерции этой точки, то уравнениям динамики можно придать форму уравнений статики. Основанный на принципе Даламбера силовой метод расчета, который состоит в перенесении методов статики в решение задач динамики механизмов и машин, называют кинетостатическим расчетом механизмов в отличие от статического расчета, при котором силы инерции звеньев не учитываются. Таким образом, если закон движения материальной системы известен, то, присоединяя к точкам этой системы, кроме задаваемых сил и реакций связей, также фиктивные силы инерции, можно рассматривать эту систему условно находящейся в равновесии и определять неизвестные силы методами статики, т. е. с помощью уравнений равновесия или принципа возможных перемещений.  [c.342]

При решении задач с помощью общих теорем динамики материальной системы силы разделяют на внутренние и внешние (/ ). Напомним, что внутренними называются силы взаимодействия между материальными точками, входящими в состав рассматриваемой системы. В соответствии с законом равенства действия и противодействия внутренние силы существуют попарно. При этом главный вектор И и главный момент /п о внутренних сил системы равны нулю, т.е.  [c.194]

На основании этого закона динамика материальной точки может быть значительно расширена, так как движение центра тяжести материальной системы также можно свести на движение материальной точки.  [c.312]

Закон моментов является удобным орудием для исследования движений вращательного характера. В динамике материальной системы мы познакомимся с важными приложениями этого закона к вращательным движениям твердого тела. Сейчас мы ограничимся  [c.75]

В механике всегда имеют дело с системой материальных точек, взаимодействующих между собой. Однако выше рассматривалось движение одной точки системы, а остальные только создавали силовое поле, в котором и двигалась изучаемая точка. В данной главе изучается движение и взаимодействие всех точек, входящих в систему. Основные понятия и законы динамики системы получаются как обобщения изученных ранее понятий и законов динамики материальной точки.  [c.128]


Рассмотрим систему, состоящую из п материальных точек. Выделим какую-нибудь точку системы с массой т . Обозначим равнодействующую всех приложенных к точке внешних сил (и активных, и реакций св ей) через F, а равнодействующую всех внутренних сил — через fj,. Если точка имеет при этом ускорение а , то по основному закону динамики  [c.273]

Особое значение имел установленный Ньютоном закон равенства действия и противодействия, позволивший перейти от динамики материальной точки к динамике механической системы.  [c.4]

В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]

Материальная точка, движение которой в пространстве не ограничено наложенными связями, называется свободной. Примером свободной материальной точки может служить искусственный спутник Земли в околоземном пространстве или летящий самолет. Их перемещение в пространстве ничем не ограничено, и, в частности, поэтому летчик на спортивном самолете способен проделывать различные сложные фигуры высшего пилотажа. Для свободной материальной точки задачи динамики сводятся к двум основным 1) задается закон движения точки, требуется определить действующую на нее силу или систему сил (первая задача динамики) 2) задается система сил, действующая на точку, требуется определить закон движения (вторая задача динамики). Обе задачи динамики решаются с помощью основного закона динамики, записанного в форме (1.151) или (1.154).  [c.125]

Законы динамики сформулированы по отношению к так называемым неподвижным осям координат. Система отсчета считается неподвижной, если ее ускорением (вычисленным относительно другой системы отсчета) по сравнению с ускорением данной материальной точки можно пренебречь.  [c.123]

Из этого закона, справедливого также лишь по отношению к инерциальной системе отсчета, следует, что сила, действующая на материальную точку, является фактором, изменяющим ее количество движения. В классической механике масса частицы считается постоянной поэтому основной закон динамики может быть еще представлен в виде  [c.171]

Инерциальные и неинерциальные системы отсчета. Вопрос об относительном движении материальной точки тесно соприкасается с самыми основными идеями механики. Всякое движение точки (или тела) мы должны рассматривать относительно некоторой системы отсчета. До сих пор мы изучали движение по отношению к так называемой инерциальной системе отсчета (см. 14, п. 2), т. е. система отсчета, в которой справедливы основные законы динамики и по отношению к которой материальная точка, на которую никакие силы не действуют, движется по инерции (равномерно и прямолинейно). Инерциальную систему отсчета называют еще условно неподвижной, а движение по отношению к ней — абсолютным.  [c.438]

Вторая аксиома, или основной закон динамики, принадлежащий Ньютону, устанавливает зависимость ускорения точки относительно инерциальной системы отсчета 01 действующей на нее силы и массы точки ускорение материальной точки относительно инерциальной системы отсчета пропорционально приложенной к точке силе и направлено по этой силе (рис, 1). Если Р есть приложенная к точке сила и а — ее ускорение относительно инерциальной системы отсчета Охуг, то основной закон можно выразить в форме  [c.225]

Из (1), если сила / = О, следует, что ускорение й = О, т. е. материальная точка имеет постоянную по числовой величине и направлению скорость относительно инерциальной системы отсчета. В основном законе содержится часть утверждения аксиомы инерции. Другая часть этой аксиомы о свойстве инерции материальной точки и всех других материальных тел в основном законе динамики не содержится.  [c.226]


Используя основной закон динамики, можно вывести дифференциальные уравнения движения материальной точки в различных системах координат. По аксиоме о связях и силах реакций свя зей можно получить дифференциальные уравнения движения и несвободной точки так же, как и для свободной, только ко всем приложенным к точке силам надо добавить силы реакций связей  [c.228]

Теорема о движении центра инерции, как и все остальные теоремы динамики, является следствием основных законов механики Ньютона, дополненных для несвободной материальной системы аксиомой об освобождении от связей.  [c.42]

Отметим, что второй закон динамики, как и закон инерции, справедлив для движения материальной точки по отношению к инерциальной системе отсчета.  [c.442]

Решение второй задачи динамики для криволинейного движения свободной точки. Изложение методов решения второй задачи динамики составляет, по существу, основное содержание всех разделов динамики точки и динамики механической системы, в частности, твердого тела. Для материальной точки, как уже было сказано, эта задача состоит в том, чтобы по заданным силам, действующим на точку, массе точки и начальным условиям движения точки (начальному ее положению и начальной скорости) определить закон движения этой точки.  [c.456]

Предыдущие главы динамики точки были посвящены изучению движения материальной точки по отношению к инерциальной (условно неподвижной ) системе отсчета, т. е. такой системе, для которой применимы основные законы динамики (законы Ньютона). Движение точки по отношению к такой инерциальной системе отсчета называют абсолютным.  [c.500]

Теорема об изменении количества движения точки. Общие теоремы динамики мы будем доказывать сначала для материальной точки, а затем для механической системы материальных точек. Для вывода теоремы об изменении количества движения точки мы будем исходить из второго закона динамики точки  [c.570]

Пусть на свободную материальную точку действует система сил, имеющая равнодействующую F. Тогда, согласно основному закону динамики (6.1),  [c.105]

Теорема о движении центра масс -всегда применяется при исследовании движения центра масс системы. Методика решения задач в этом случае не отличается от той, которую мы применяли в динамике материальной точки. Теорема с успехом может заменить во многих случаях теорему об изменении количества движения системы. Ее особенно удобно применять в тех случаях, когда выполняется закон сохранения движения центра масс. При решении задач с использованием данной теоремы рекомендуется следующая последовательность действий.  [c.185]

Общие замечания о теоремах и законах динамики. Рассмотрим движение системы материальных точек Pj = 1, 2,. .., N) в некоторой инерциальной системе координат. Пусть — масса точки а — ее радиус-вектор относительно начала координат. Если система несвободна, то ее можно рассматривать как свободную, если помимо активных сил, приложенных к точкам системы, учесть реакции связей. Если затем все силы, приложенные к системе, разбить на внешние и внутренние, то из аксиом Ньютона получим дифференциальные уравнения движения рассматриваемой механической системы в виде  [c.156]

Законы динамики описывают механическое движение материальных тел по отношению к инерциальной системе отсчета. Система отсчета называется инерциальной, если изолированная материальная точка по отношению к этой системе находится в покое или движется прямолинейно и равномерно.  [c.10]

Законы динамики описывают движение материальной точки относительно так называемых неподвижных осей. Так, уравнение динамики движения материальной точки, отнесенное к неподвижной системе отсчета, имеет вид  [c.134]

Закон освобождаемости от связей (принцип освобождаемости от связей). В задачах динамики несвободной материальной системы пользуются  [c.389]

Пусть имеем систему, состоящую из п материальных точек. Согласно сказанному в 121 все силы, действующие на систему, включая и реакции связей, можно разделить на силы внешние и силы внутренние. Возьмем какую-нибудь точку системы, масса которой равна обозначим равнодействующую всех внешних сил, приложенных к этой точке, через а равнодействующую всех внутренних сил, приложенных к той же точке, через ускорение этой точки обозначим через Wf . Тогда, применяя второй основной закон динамики, получим  [c.472]

И все же можно потребовать, чтобы движение относительно таких подвижных систем отсчета определялось бы теми же зако-нами, которые действуют и в неподвижной системе. Эта инвариантность законов движения. будет связана с определением сильь Так как в различных системах координат точка будет иметь различное ускорение, то и сила, определяющая это ускорение, должна быть в них различной. Как показывается в курсах теоретической механики, при переходе от одной системы отсчета к другой к действующим на материальную точку силам необходимо добавлять силы Кориолиса. Силы Кориолиса являются реальными силами, определяющими движение материальной точки относительно некоторой системы отсчета. Сама же система теперь может рассматриваться как неподвижная. При этом, очевидно, оказываются справедливыми все законы динамики материальной точки.  [c.76]


Под системой материальных точек, или материальной систе-м о й, понимается в механике такое тело, которое в противоположность твердому может претерпевать изменения формы. Материальная система состоит часто из частей, представляющих в отдельности твердые тела, находящиеся в движении одно относительно другого, например паровоз и его колеса и части парораспределения, пароход и его машина и т. д. Человек, рассматриваемый с точки зрения динамики, представляет собою тоже материальную систему. Нашу планетную систему можно рассматривать как материальную систему, в которой солнце и планеты в отдельности представляют материальные точки. Твердое тело представляет особый частный случай материальной системы, не подвергающейся изменению формы. Общие законы движения материальной системы применяются, главным образом, к твердому телу. При материальной системе особенно важно различие между наружными и внутренними силами. Например, в планетной системе все силы притяжения между отдельными планетами и солнцем представляют собою внутре-нние силы. Если же будет рассматриваться система, состоящая из земли и луны в отдельности, то сила притяжения между землей и луной, действующая как на землю, так и на луну, является внутренней силой, а притяжения солнца и других планет являются для системы земля — луна внешними силами. Напряжения упругого тела являются внутренними силами. В паровозе внутренними силами являются давление пара, давление между шатуном и кривошипом и т. д. внешними силами являются вес паровоза, давление рельс, сопротивление трения рельс, сопротивление воздуха и т. д.  [c.309]

Второй закон динамики, как и первый, имеет место только по отношению к инерциальной системе отсчета. Из этого закона непосредственно видно, что мерой инертности материальной точки явля-  [c.182]

Третий закон механики проявляется при рассмотрении движе-1Н1Я тел в любой системе отсчета. Если, например, в результате механического воздействия некоторого тела А и материальной точки М массой т эта точка получает ускорение w, то сила Р, выражающая действие тела А на точку М, определяется вторым законом динамики  [c.10]

Законы динамики описывают механическое движение материальных тел по отношению к так называемым неподвижным или аб-солютн.ым осям координат и по отношению к осям, которые движутся поступательно и равноме))но по отношению к неподвижным (инерциальные оси). Начало абсолютной системы координат принимается в центре Солнца, а оси направляются на три отдаленные звезды. Конечно, в природе, где материальные тела находятся во взаимодействии и движении, нет неподвижных осей координат. Однако в зависимости от требований, предъявляемых к результатам подсчетов, можно и другие координатные системы приближенно считать  [c.9]

Применение законов динамики к изучению механических движений материальных тел по отношению к движущейся системе отсчета рассмотрено ниже, в главе VIII, 5.  [c.10]

Используя основной закон динамики, можно вывести дифс )ерен-циальные уравнения движения материальной точки в различных системах координат. По аксиоме о связях и силах реакций связей можно  [c.208]

Инерционность звеньев способствует или препятствует движению рабочих органов механизмов. В соответствии с известными положениями динамики материального тела, рассматриваемого как системы материальных точек, силы инерции учитываются при решении ди( х[)еренциальных уравнений движения. звеньев, решение которых позволяет определить истинный закон движения. При инженерных расчетах часто вместо учета истинного закона [тзменення внешних сил при силовом расчете движущегося звена решением дифференциальных уравнений движения учитывают действие нагрузок на звено в конкретных его положениях, придавая уравнениям движения форму уравнений статики. Этот расчет проводится в соответствии с принципом Д Аламбера (с.м. прил.) механическая система может считаться находящейся в равновесии, если ко всем действующим на нее силам добавлены силы инерции. Следовательно, для выполнения силового расчета механизма необходимо определить силы и моменты сил инерции его звеньев для рассматриваемых их положений.  [c.244]

Теорему об изменении кинетического момента системы в ее движении относительно центра инерции можно было доказать иначе, не используя формулу (1.51), а исходя из основного закона динамики относительного движения ( 230 т. I). Как известно, всякую задачу при изучении относительного движения материальной точки можно решать как задачу об абсолЕОТ-ном движении, но вместо второго закона Ньютона для абсолютного движения нужно пользоваться основным законом динамики относительного движения  [c.66]

Введя понятия об инерциальной системе отсчета и силе, первый закон динамики для тела, принимаемого за материальную точку, можно сформулировать следующим образом существуют такие системы отсчета, относительно которых поступательно движуи иеся тела сохраняют свонр скорость постоянной, если на них не действуют другие тела или действие других тел компенсируется.  [c.31]

Рассмотрим систему из п тел, принимаемых за материальные точки, между которыми действуют консервативные и неконсерва-тпвные силы. В соответствии со вторым законом динамики для каждого из тел системы можно написать уравнение  [c.54]

Глубокое развитие идеи Гаусса дал в 1892—-1893 гг. Герц ), разработавший принцип прямейшего пути ценность принципа Герца состоит в том, что он сводит задачи механики к проблеме геодезических линий и тем самым геометризует классическую динамику. Принцип Герца был бы просто частным случаем принципа Гаусса, если бы он не заменил сил, действующих на систему, связями ее с другими системами, находящимися с ней во взаимодействии. Этим самым Герц как бы изучал только свободные системы, вводя кроме наблюдаемых еще и скрытые массы и скрытые движения . Исторические корни механики Герца содержатся в работах Гельмгольца о скрытых движениях (введение которых у Герца оказывается логически необходимым следствием его концепции основ механики) и в работе Кирхгофа по выяснению основ механики. В своей формулировке каждое естественное движение самостоятельной материальной системы состоит в том, что система движется с постоянной скоростью по одному из своих прямейших путей . Герц объединяет, по существу говоря, закон инерции и принцип наименьшего принуждения. Герц отмечает глубокую связь своего принципа с теорией поверхностей и многочисленные аналогии, которые возникают при его рассмотрении. Принцип Герца находится в тесной связи с геометрической оптикой и теоремой Бельтрами—Липшица, так как между прямейшими путями и нормальными к ним поверхностями в процессе движения имеет место то  [c.849]


Дифференциальные уравнения движения, баланса энергии и веществ в потоках жидкости и газа, выведенные в гл. II, относились к совершеннопроизвольным средам, лишь бы только эти среды обладали двумя достаточнообщими свойствами — сплошностью и текучестью. При выводе уравнений были использованы второй закон динамики в применении для сплошной системы материальных частиц и общий термодинамический закон сохранения полной энергии системы.  [c.351]

Законы динамики применимы не только для отдельных материальных точек, но и для систем материальных точек, неизменно связанных между собой и образующих твердое тело. Массу тела можно представить сосредоточенной в бдной точке, называемой центром масч системы. Если действующие на тело силы приложить в центре масс без изменения их направления и величины, то все точки тела будут двигаться как заменяющая его материальная точка.  [c.100]


Смотреть страницы где упоминается термин Законы динамики материальной системы : [c.240]    [c.226]    [c.50]    [c.274]    [c.121]   
Курс теоретической механики (2006) -- [ c.39 , c.722 ]



ПОИСК



ДИНАМИКА Законы динамики

ДИНАМИКА СИСТЕМЫ МАТЕРИАЛЬНЫХ ТОЧЕК Занятие 10. Применение законов Ньютона к системе материальных точек Закон сохранения импульса

Динамика материальной системы

Законы динамики

Материальная

Отдел II ОСНОВНЫЕ ПОЛОЖЕНИЯ ДИНАМИКИ СИСТЕМЫ. УРАВНЕНИЯ ДВИЖЕНИЯ ЗАКОНЫ ДИНАМИКИ XXVII. Свободные и несвободные материальные системы. Связи

Система материальная

Системы Динамика



© 2025 Mash-xxl.info Реклама на сайте