Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение кинетической энергии в относительном движении

Уравнение кинетической энергии в относительном движении получим из (2,85), умножая обе части скалярно на г отн —  [c.103]

Кинетическая энергия в относительном движении. С уравнениями (4) можно, очевидно, проделать все аналитические преобразования, которые делались при изучении абсолютного движения.  [c.236]

Так как начальная относительная скорость шарика по условию равна нулю, то уравнение, выражающее теорему о кинетической энергии в относительном движении, принимает следующий вид  [c.458]


Первый путь. Неинерциальный наблюдатель мог бы и в более сложном случае (например, при наличии механических связей) рассуждать так, как это делали мы выше в разобранном примере. Именно, он мог бы, составив полную кинетическую энергию (в абсолютном движении ), выразить ее через свои относительные координаты и скорости (рассматривая переносные скорости своей системы как заданные функции времени ) и воспользоваться затем уравнениями Лагранжа в их обычной записи. На  [c.163]

Теорема об изменении кинетической энергии при относительном движении. Поскольку уравнение относительного движения (5) отличается от уравнения (2) только наличием в правой части дополнительных слагаемых и то, очевидно, все общие теоремы динамики точки, полученные в 33 как следствия уравнения (2), имеют место и в относительном движении, если только к действующим на точку силам взаимодействия с другими телами прибавить переносную и кориолисову силы инерции.  [c.441]

Это уравнение определяет относительное движение точки по радиусу-вектору. Оно показывает, что движение происходит так, как если бы радиус-вектор был неподвижен, а сила, действующая на точку, была увеличена на т(У г . Это же уравнение определяет г в функции t, когда Р зависит только от г или от / и Л Используем теперь для подстановки в уравнение кинетической энергии выражение (4). Написав уравнение кинетической энергии в 1 йту г, <1г  [c.329]

Уравнение (IV.229) выражает теорему об изменении кинетической энергии материальной точки в относительном движении в дифференциальной форме. Второй член в правой части — элементарная работа переносных сил инерции. Элементарная работа кориолисовой силы инерции равна нулю, так как эта сила перпендикулярна к относительной скорости, н, следовательно, к вектору йг.  [c.447]

Теорема об изменении кинетической энергии точки в относительном движении. Для вывода этой теоремы будем исходить из уравнения относительного движения точки (6, 93)  [c.636]

Геодезические линии поверхностей вращения. Мы ставили целью составить два уравнения, не содержащих нормальной реакции, и получили в качестве таковых уравнение кинетической энергии и одно из уравнений Лагранжа. В случае движения точки на поверхности вращения мы всегда будем иметь два не зависящих от реакции уравнения, применив теорему кинетической энергии и теорему момента количества движения относительно оси вращения, так как нормальная реакция лежит в одной плоскости с осью вращения и ее момент относительно этой оси равен нулю. Приложим, в частности, этот метод к определению геодезических линий поверхностей вращения.  [c.428]


Уравнения (5) и (6) тождественно совпадают с уравнениями площадей и кинетической энергии в задаче о движении точки, притягиваемой неподвижным центром О пропорционально расстоянию. Следовательно, движение точки М относительно осей х Оу1 тождественно с абсолютным движением точки М, притягиваемой неподвижной точкой О пропорционально расстоянию. На основании установленного в п. 223 точка М описывает относительно осей л хОу эллипс с центром в точке О, причем период обращения точки  [c.256]

Этот знаменитый результат Эйнштейна представляет собой одно из наиболее важных открытий теоретической физики. В ньютоновой физике кинетическая энергия частицы фигурировала в виде ти /2 это означало, что масса приобретает энергию только при движении. Новое уравнение (9.5.13) ставит рядом с ньютоновым членом огромную величину тс демонстрируя тем самым, что масса является носителем громадного количества энергии, связанной лишь с фактом самого суш,ествования этой массы. По сравнению с ней обычная кинетическая энергия в большинстве случаев пренебрежимо мала. В связи с тем что различные формы энергии могут довольно легко переходить одна в другую, на горизонтах науки появилась возможность перевода и этой новой формы энергии в другие формы. Успех в деле создания атомной бомбы трагически подтвердил этот вывод теории относительности.  [c.359]

Кинетическую энергию сателлитов в относительном движении (вращательном движении относительно оси, проходящей через собственный центр инерции сателлита), воспользовавшись вторым уравнением связи (4.5), представим в виде  [c.129]

Квадратичную форму для кинетической энергии сателлитов в относительном движении, используя уравнения связей (4.68), нетрудно привести к каноническому виду  [c.146]

В учебных курсах по теоретической механике уравнениям Лагранжа второго рода уделяется значительное внимание. Уравнения Лагранжа дают эффективный аппарат составления уравнений движения различных голономных систем. Зачастую эти уравнения используются для изучения относительного движения механических систем. В определенных случаях для составления выражения кинетической энергии Т абсолютного движения требуется гораздо больше преобразований (выкладок), чем для составления выражения кинетической энергии относительного движения тМ. Поэтому целесообразнее в указанных случаях использовать уравнения Лагранжа для относительного движения [ 1] — [ 5 ], в которых вместо Т фигурирует функция Т( ).  [c.22]

Хотя уравнение кинетической энергии К = тш 12 явно не зависит от координаты х, но с учетом скольжения ленты по поверхности валков имеет место перемещение точки валка Ов относительно точки ленты О л (рис. 20), которое устанавливает связь между скоростью и координатой. В момент времени t скорость точки Ов будет равна к в(0. а скорость точки Од отличаться от нее на величину скорости скольжения Wл = Wв t) с1х/сИ. Относительная (переносная) скорость движения точки ленты будет равна Wпp = Wв t)—Wл i tnv), где пр — время динамического проскальзывания.  [c.59]

Из этого уравнения видно, что удельная работа в осевой ступени равна сумме двух величин разности кинетических энергий иа входе и выходе из рабочих лопаток в абсолютном движении н разности кинетических энергий на выходе и входе в относительном движении.  [c.40]

Формулу (2.75) следует рассматривать как уравнение сохранения энергии потока в относительном движении в каналах рабочих лопаток сумма потенциальной и кинетической энергии потока на входе в каналы в относительном движении равна сумме потенциальной и кинетической энергии на выходе из каналов минус энергия, затрачиваемая потоком на преодоление поля центробежных сил.  [c.63]

С другой стороны, при полном изоэнтропическом торможении потока в относительном движении его кинетическая энергия обратимо переходит в тепло. Энтальпия торможения определяется очевидным уравнением  [c.578]


Уравновешенный гироскоп в кардановом подвесе движется по инерции. Определить кинетическую энергию системы и первые интегралы уравнений движения, если момент инерции внешней рамки относительно неподвижной оси вращения равен  [c.373]

Представление энергии смеси в виде (1.1.17), на основе которого и записываются уравнения энергии в этой главе, справедливо, если каждую фазу считать локально однородной, т. е. в каждом элементарном объеме смеси вещество каждой фазы, в том числе и включений (капель, частиц, пузырьков и т. д.), принимается однородным вплоть до самой поверхности раздела фаз, и поэтому энергия каждой составляющей считается пропорциональной ее массе. Это равносильно тому, что особенности поверхностного слоя вещества толщиной порядка радиуса молекулярного взаимодействия (- 10 Л1),являющегося границей раздела фаз, далее не учитывается. Для этого необходимо, чтобы размеры включений были во много раз больше толщины этого слоя. Кроме того, в (1.1.17) и везде в гл. 1 будет учитываться только та часть кинетической энергии смеси, которая связана с макроскопическим движением фаз со скоростями U . В действительности имеются еще мелкомасштабные (с характерным линейным размером, равным по порядку размеру неоднородностей смеси) течения (например, радиальные пульсационные движения вокруг пузырьков, обратные токи несущей жидкости около включений из-за их относительного движения в этой жидкости, хаотические движения включений). В большинстве существующих теорий взаимопроникающего движения кинетическая энергия такого движения не учитывается. Таким образом в качестве первого этапа в гл. 1 рассматривается случай, когда энергия смеси при однородном представлении энергий фаз является аддитивной по массе фаз. Учет поверхностных явлений в рамках представлений Гиббса и кинетической энергии мелкомасштабного движения фаз имеется в главах 2—4.  [c.30]

Основная задача динамики в обобщенных координатах состоит в том, чтобы, зная обобщенные силы Qi, Qa, . и начальные условия, найти закон движения системы в виде (107), т. е. определить обобщенные координаты qu q ,. . как функции времени. Так как кинетическая энергия Т зависит от обобщенных скоростей qi, то при дифференцировании первых членов уравнений, (127) по t в левых частях этих уравнений появятся вторые производные по времени qi от искомых координат. Следовательно, уравнения Лагранжа представляют собой обыкновенные дифференциальные уравнения второго порядка относительно обобщенных координат q  [c.378]

Если мы хотим, чтобы при этом движение по-прежнему определялось из уравнений Лагранжа однозначно (по начальным данным), то мы не можем произвольным образом, без всяких ограничений, постулировать лагранжиан L как функцию q, q w t. Действительно, основная теорема лагранжева формализма была доказана в предположении, что кинетическая энергия, а значит и лагранжиан, имеет вполне определенную структуру. Если лагранжиан задается каким-либо иным образом и имеет другую структуру, основная теорема лагранжева формализма, вообще говоря, не выполняется. Следовательно, вообще говоря, уравнения Лагранжа, полученные при этой иной функции Лагранжа, могут оказаться неразрешимыми относительно старших производных, и для них уже не будет верна теорема о существовании и единственности решения при заданных начальных данных. Для того чтобы сохранить это важное свойство уравнений Лагранжа, надо ограничить выбор лагранжиана L при его аксиоматическом задании. Легко видеть, что это ограничение должно быть представлено в форме  [c.165]

Можно упростить интегрирование дифференциальных уравнений движения, используя теорему об изменении кинетической энергии системы материальных точек в задачах, где главный вектор и главный момент сил, приложенных к твердому телу, постоянны либо зависят от положений точек (угла поворота) твердого тела, а в число данных и неизвестных величин входят масса и момент инерции твердого тела относительно оси, проходящей через его центр инерции перпендикулярно к неподвижной плоскости, силы, приложенные к твердому телу, перемещения точек твердого тела (угловые перемещения), скорости точек твердого тела (угловые скорости) в начале и в конце этих перемещений.  [c.542]

Замечание, При применении уравнений Лагранжа второго рода к задачам на относительное движение, а также к задачам с нестационарными связями кинетическую энергию материальной системы следует вычислять в ее абсолютном движении при нахождении обоб щенных сил нужно исходить из того, что связи считаются мгновенно остановленными.  [c.60]

Припомним, что внутренние силы системы не вошли в уравнение проекций количеств движения системы (183) и в уравнения моментов системы (196). Однако они имеются в уравнении (208) кинетической энергии системы. Происходит это потому, что сумма проекций на любую ось и сумма моментов всех внутренних сил относительно любой оси всегда равна нулю, так как внутренние силы системы попарно равны и действуют по одной прямой в противоположные стороны. Но сумма работ внутренних сил системы в общем случае не равна нулю.  [c.235]

Пуля, попадая в контейнер баллистического маятника, движется затем вместе с контейнером как единое целое. Количество движения и кинетический момент относительно точки подвеса маятника, которые имела пуля до попадания в контейнер, сохраняются. Им соответствуют первые интегралы уравнений движения. Кинетическая энергия системы уменьшается за счет тепловых потерь.  [c.388]


Определить уравнения движения диска О, давление на ось блока В, количество движения и кинетическую энергию системы и кинетический момент диска и относительно точки соприкосновения диска о рельсом через 1 с после начала движения.  [c.341]

Движение состоит из чего (из относительного и переносного движений, из переноса и поворота...), начинается как (из состояния покоя...), характеризуется чем (кинетической энергией...), (не-) сводится к чему (к вращению...), (не-) раскладывается на что (на поступательное и вращательное...), (не-) задано как (естественным способом, координатным способом...), (не-) задано чем (уравнениями, графиком...), рассматривается как что (как вращение...), можно определить чем (заданием эйлеровых углов...), (не-) определяется, выражается чем (формулами, уравнениями...), (не-) происходит где (в одном направлении, на плоскости, в пространстве, во времени...), является чем (вращением, параллельным переносом,..), (не-) является каким (сложным, поступательным, составным, плоскопараллельным, абсолютным, относительным, переносным...), (не-) меняет что (ориентацию фигуры...).  [c.44]

Замечание. Уравнение (I. 113) можно получить также на основании теоремы об изменении кинетической энергии материальной точки при относительном движении, приведенной в 232 первого тома.  [c.96]

Независимо от способа получения уравнений возмущенного движения (6.40) функцию Т можно рассматривать как кинетическую энергию приведенной системы, переменные и и — как обобщенные координаты и скорости, а члены, стоящие в правых частях этих уравнений,— как потенциальные, диссипативные, гироскопические и неконсервативные позиционные силы соответственно. Относительно сил предполагается только, что  [c.163]

Эта особенность перегретых паров должна учитываться при составлении уравнения состояния их. Так как энергия связи молекул в группе больше средней кинетической энергии относительного движения молекул, то образовавшиеся в результате ассоциации группы должны быть сравнительно устойчивы и с достаточным основанием могут считаться как независимые частицы или молекулы газа, эквивалентные в кинетическом отношении одиночным или свободным молекулам. Рассматривая перегретый пар как совокупность свободных молекул и ассоциированных групп или комплексов, находящихся в термодинамическом равновесии, можно, воспользовавшись законами газовых смесей, компоненты которых взаимодействуют один с другим подобно химическим реагентам, получить уравнение состояния перегретых паров в виде  [c.284]

Из последнего уравнения получаем реакцию, которая немного отличается от веса тела вследствие того, что имеется член с м. Два первых уравнения определяют движение в плоскости ху. Применяя теорему кинетической энергии, найдем, что относительная скорость t/ точки постоянна и равна Kq. Обо-  [c.259]

Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, поскольку этот принцип приводит не только к дифференциальным уравнениям задачи, но также и к краевым условиям, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных. Во многих случаях необходимо вначале искать функцию Лагранжа L (входящую в выражение вариационного принципа) в зависимости от характера задачи. Это имеет место, например, при движении электрона в магнитном поле, когда действующая сила не имеет потенциала У далее — в теории относительности, когда L нельзя выразить с помощью выведенного нами выражения (4.10) для кинетической энергии. Здесь роль кинетической части принципа наименьшего действия играет выражение  [c.277]

Кинетическая энергия и риманова геометрия Использование произвольных обобщенных координат для описания движения механической системы является одной. из существенных черт аналитической механики. Структура уравнений аналитической механики такова, что они могут быть записаны в виде, не зависящем от применяемых координат. Это свойство общих уравнений движения связывает аналитическую механику с одним из крупнейших достижений математики девятнадцатого века — теорией инвариантов и ковариантов. Эта теория окончательно созрела в наши дни, когда теория относительности Эйнштейна показала, как законы природы связаны с проблемами инвариантности. В основе теории относительности лежит требование, чтобы формулировки законов природы не зависели от какой-либо специальной системы координат. Математическое решение этой проблемы показало, что между законами, управляющими материей, и римановым основанием геометрии, существует глубокая внутренняя связь. Согласно общей теории относительности Эйнштейна, истинная геометрия природы не евклидова, а более общая— риманова эта геометрия связывает пространство и время в единое четырехмерное многообразие.  [c.39]

Второй путь. Неинерциальный наблюдатель мог бы с самого начала добавить к исходным (приложенным) силам переносные и кориолисоры силы инерции. Относительные скорости, входящие в Еыражения для кориолисовых сил, рассматривались бы при этом как неизвестные функции. Далее такой наблюдатель мог бы рассуждать так Теперь, после добавления сил инерции, в моей системе отсчета верен второй закон Ньютона значит, в этой системе верны и уравнения Лагранжа, если в них входит кинетическая энергия видимого мной (т. е. относительного ) движения и если обобщенные силы подсчитываются, исходя из виртуальных перемещений в относительном движении . Поэтому такой наблюдатель мог бы сразу выписать уравнение Лагранжа в своей системе отсчета, подсчитывая кинетическую энергию через свои , т. е. относительные скорости. Но при подсчете обобщенных сил ему пришлось бы принять во внимание и работу сил инерции на виртуальных перемещениях в относительном движении.  [c.164]

Скорость на входе в ступень l, на выходе Сд. Для определения работы, затрачиваемой на политропное сжатие воздуха и на преодоление трения в рабочем и н шравляющем аппаратах, используем уравнение (7.2). Ei относительном движении рабочее колесо неподвижно и, следовательно, = 0 тогда из (7.2) h + 1 ) = = wi—а>2]/2. Для направляющего аппарата имеем (Л + / )н = [с1—Сз)/2. Работа, затрачиваемая на сжатие воздуха и покрытие потерь трения в рабочем и направляющем аппаратах, а также на изменение кинетической энергии потока, составляет  [c.230]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]


Значение s можно было бы опять определить с помощью теоремы об изменении кинетической энергии, но в данном случае проще составить дифференциальное уравнение относительного движения груза [уравнение (56) из 91] в проекции ма ось /Is. Так как подвижн система отсчета вместе с призмой перемещается поступательно, то кор=0, а Рпер——ща , где —ускорение призмы (aj= U ). Тогда fn ps=—т х os а, и в проекции на ось /4s получим  [c.316]

Указанным путем уравнения Лагранжа составляются независимо от того, рассматривается ли абсолютное (по-отношению к инер-циальной системе 01счета) или относительное движение механической системы. Но в последнем случае возможен и другой путь, а именно кинетическую энергию системы определять в ее относительном движении, но зато при нахождении обобщенных сил присоединить к силам, действующим на систему, переносные силы инерции (чего при использовании первого пути делать не надо).  [c.380]

Определить уравнения движения диска Д, давление на оеь блока В, количество движения и кинетическую энергию системы и кинетически . момент диска О относительно точки соприкосновения диска с рельсом через одну секунду после начала движения.  [c.315]

Положение системы зависит от двух параметров от угла наклона <р стержня АВ относительно вертикали Ох и от угла 0, который обра зует прямая 00, соединяющая середины обоих стержней с этой вертикалью. Система находится под действием весов обоих стержней, натяжений Т и Т нитей и реакции неподвижной точки О. Для определения движения необходимы два уравнения, не содержащие реакций связей. Эти уравнения получатся из теоремы кинетической энергии и теоремы момента количества движения относительно нормали к плоскости фигуры в точке О.  [c.103]

Благодаря введению этих переносных сил мы можем рассматривать оси 0х1у 21 как неподвижные и применить уравнения Лагранжа к движению относительно этих осей, как если бы это движение было абсолютным. Обозначим через Т кинетическую энергию системы в движении относительно осей 0х1У121. Уравнения движения будут  [c.313]


Смотреть страницы где упоминается термин Уравнение кинетической энергии в относительном движении : [c.67]    [c.64]    [c.13]    [c.23]    [c.383]    [c.179]    [c.312]   
Теоретическая механика (1981) -- [ c.103 ]



ПОИСК



Вращательное движение тела относительно оси. (Кинематика. Момент импульса вращающегося тела. Уравнение движения для вращения тела относительно оси (уравнение моментов). Вычисление моментов инерции. Кинетическая энергия вращающегося тела. Центр тяжести. Прецессия гироскопа

Движение относительное

Дифференциальные уравнения относительного движения материальной точки. Относительное равновесие и состояние невесомости. Теорема об изменении кинетической энергии при относительном движении

Кинетическая энергия относительна

Кинетическая энергия—см. Энергия

Кинетические уравнения

Относительная кинетическая энерги

Относительность движения

Уравнение энергии

Уравнения кинетической энергии

Уравнения относительно го движения

Уравнения относительного движения

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая движения относительного

Энергия относительная



© 2025 Mash-xxl.info Реклама на сайте