Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинематические величины относительные

При вычислении величины относительной угловой скорости необходимо учитывать направления вращения звеньев кинематической пары, т. е. в уравнение (6.23) следует подставлять величины oj и o)g с учетом их знака.  [c.161]

В машиностроении обычно применяют такие кинематические цепи, у которых одно звено неподвижно, т. е. является стойкой. Поэтому при изучении движения звеньев кинематической цепи рассматривают их абсолютные перемещения, происходящие относительно одного из звеньев, принятого за неподвижное (стойку). Таким образом, общее число степеней свободы кинематической цепи относительно неподвижного звена уменьшается на величину q, т. е. qn q= q n— 1), а структурная формула (2.3) принимает вид  [c.17]


Условимся называть абсолютными кинематические величины,, которые относятся к этим последним осям, и относительными кинематические величины, относящиеся к неизвестной системе осей, обладающей указанным выше свойством.  [c.249]

Известная величина относительной скорости ползуна после удара позволяет правильно выбрать характеристику пружины силового замыкания кинематической пары 2—4 на угле согласования.  [c.73]

Напомним, что гидромуфта относится к такому виду передач, которые устанавливают только силовые связи, а не кинематические, поэтому определенное передаточное отношение г обусловливается не только данной величиной относительного заполнения рабочего объема q , но и вполне определенной величиной момента, передаваемого гидромуфтой Afa, т. е. i = f(qo,. М2).  [c.165]

Кинематические величины зависят от выбора системы отсчета. Движение относительно системы, условно считаемой неподвижной, называется абсолютным. Система, движущаяся относительно неподвижной, называется подвижной, а движение относительно нее — относительным, Абсолютное движение той точки подвижной системы, через которую в данный момент проходит анализируемая материальная точка, называется переносным, а скорость ее— переносной.  [c.198]

Элементарные активные двухполюсники. Активные двухполюсники являются идеализированными механическими элементами — источниками механической энергии. Их условно делят на источники (возбудители) силы и источники (возбудители) кинематических величин — перемещений, скоростей, ускорений. Все идеальные источники имеют бесконечную мощность, но в каждом отдельном случае название источника определяется его внутренним сопротивлением. Источник силы имеет нулевое внутреннее сопротивление при отсутствии порождаемой силы он не оказывает сопротивления движению системы, при этом его полюсы повторяют движение полюсов элементов, к которым они присоединены. Источники кинематических величин имеют бесконечное внутреннее сопротивление при отсутствии порождаемой кинематической величины они не сообщают системе энергии, а относительное перемещение полюсов источника при этом равно нулю.  [c.47]

Источники кинематических величин. Источник кинематической величины (перемещения, скорости, ускорения) есть идеальный механический элемент с бесконечным внутренним сопротивлением, который задает определенное относительное движение полюсов при произвольных, определяемых свойствами возбуждаемой системы силах в полюсах (рис. 13). Для источника кинематической величины известен вектор относительного перемещения полюсов d [см. уравнение (6)]. В зависимости от вида кинематической величины, используемой в конкретной решаемой задаче, различают источники перемещения d, скорости v или ускорения а.  [c.48]


Входные цепи датчиков. В случае измерения силы датчик должен быть соединен последовательно с объектом, на котором производится измерение (при последовательном соединении элементов действующие в них силы одинаковы). Датчик не вносит искажений в измерения и в распределение сил на объекте, если его входной импеданс значительно больше импеданса места включения. Поэтому в некоторых случаях ЧЭ как обособленная часть датчика вообще отсутствует. Если для МЭП естественной входной величиной (ЕВВ) является сила, то при расчетах механическая входная цепь датчика от входа до МЭП учитывается импедансом С если ЕВВ — скорость, то эта цепь учитывается подвижностью (см. гл. VHl, раздел 1). При измерении кинематических величин устанавливаемые датчики не должны существенно изменять параметры объекта, а датчики относительных кинематических величин не должны изменять движения концов на измеряемом участке, т. е. они должны иметь большую входную подвижность.  [c.213]

Способом, позволяющим отчасти устранить влияние нелинейности системы (например, влияние высших гармонических составляющих), является измерение мнимой и действительной частей кинематических величин, т. е. синфазной (в фазе с возбуждающей силой) составляющей этих величин и квадратурной — сдвинутой на четверть периода по фазе относительно силы, см. (9), (10).  [c.334]

Согласно кинематической гипотезе Кирхгофа поперечные волокна оболочки,- перпендикулярные ее срединной поверхности, в процессе деформации перемещаются как абсолютно твердое тело, оставаясь перпендикулярными деформированной срединной поверхности. Однако тогда независимо от величины относительных удлинений и сдвигов вектор перемещения оболочки определяется формулой (5.14) с условием  [c.320]

Какие кинематические величины характеризуют вращение твердого тела относительно закрепленной оси Дайте определение угловой скорости и углового ускорения. Как направлены эти векторы для тела с закрепленной  [c.223]

Деформация определяет собой конечный результат движения частей тела друг относительно друга. Она является основной кинематической величиной при описании таких движений."  [c.147]

Теоремы Бернулли. Уравнением Бернулли обычно называют один из первых интегралов уравнений движения ). В зависимости от частных динамических или кинематических предположений относительно характера движения это уравнение принимает различные формы, одиако во всех случаях основную роль играет величина  [c.54]

А. Кинематические величины. Кинематические величины являются величинами нулевого измерения относительно силы, потому что они зависят только от времени и пространства.  [c.282]

Так, например, для измерения кинематической точности относительного перемещения супорта и вращения шпинделя винторезного станка обычно пользуются эталонным прецизионным винтом, вращаемым от шпинделя, и сопоставляют мгновенные положения движущегося супорта станка с соответствующим осевым перемещением витка прецизионного винта при вращении последнего. Ясно, что в этом примере отсчет координаты положения супорта станка в каждый данный момент производится от непрерывно смещающегося по определенному закону начала координат — витка прецизионного винта. Тем самым измерение координаты положения супорта станка, т. е. величины, превышающей искомое мгновенное значение функции ошибки иногда в десятки тысяч раз, заменяется измерением отклонения положения движущегося супорта от параллельно идущего витка эталонного винта, т. е. измерением величины, имеющей порядок искомого значения функции ошибки.  [c.89]

В динамических задачах теории упругости искомым обычно является векторное поле перемещений частиц среды. Другие кинематические величины — скорости, ускорения, относительные удлинения и сдвиги (деформации), повороты и их производные по времени — явно выражаются через перемещения (через производные от перемещений). Силовые факторы — напряжения—с помощью закона Гука выражаются через деформации. В механике сплошных сред различают две системы независимых переменных, функциями которых являются указанные выше величины. Одна из них г) связы-  [c.24]


Мгновенная принципиальная кинематическая схема многокоординатного формообразования сложных поверхностей деталей (см. рис. 2.1) исключает из рассмотрения относительные движения поверхностей Д и И вдоль контактной нормали не абсолютно. Если принять во внимание величину допуска на точность формообразования поверхности Д, то движение инструмента относительно детали вдоль контактной нормали не только допустимо, но и имеет место практически всегда важно только, чтобы величина хода этого движения не приводила к смещению инструмента за пределы допуска на точность формообразования поверхности детали. Движение инструмента относительно детали вдоль контактной нормали учитываются при рассмотрении процесса формообразования поверхностей в широком понимании. Изложенное может быть учтено при составлении уравнений кинематического баланса относительного движения детали и инструмента в процессе обработки.  [c.125]

Для определения мощностей, расходуемых на трение в кинематических парах, необходимо определить относительные угловые скорости в шарнирах и относительную скорость ползуна по направляющей. Относительная угловая скорость звена 1 относительно стойки 6 равна заданной угловой скорости i, так как вал А вращается в неподвижном подшипнике. Для определения относительных угловых скоростей в остальных шарнирах строим план скоростей механизма (рис. 14.5, б) и находим из построенного плана скоростей угловые скорости звеньев ВС, D и EG. Величины этих скоростей  [c.314]

Кинематический расчет пространственных планетарных передач, составленных из конических зубчатых колес, осуществляется аналитическим или графическим методом, но при исследованиях оперируют векторной величиной угловой скорости. Такие механизмы нашли широкое применение в виде дифференциалов с двумя степенями свободы (рис. 15.9, а). Этот механизм состоит из центральных колес /, 3 и водила Н, вращающихся вокруг оси AOF, планетарного колеса 2, участвующего в двух вращательных движениях в пространстве (вместе с водилом вокруг оси OF и относительно водила вокруг оси ОС). Следовательно, ось ОС является осью вращения колеса 2 относительно водила Н, линия ОВ — осью мгновенного вращения колеса 2 относительно колеса /, линия 0D — осью мгновенного вращения колеса 2 относительно колеса 3.  [c.411]

Вязкость — свойство жидкости, обусловливающее появление касательных напряжений между слоями движущейся жидкости при их относительном перемещении. Количественной мерой вязкости являются величины динамической ) и кинематической v вязкостей. Они связаны соотношением  [c.61]

Кинематическая точность характеризуется величиной и закономерностью изменения погрешности поступательного перемещения одной из сопряженных резьбовых деталей винтовой пары в их относительном движении.  [c.344]

Для обеспечения подвижности размеры элементов кинематических пар охватывающих поверхностей звеньев выполняют несколько большими, чем охватываемых. Из-за этого появляется возможность относительного перемещения звеньев по линии действия реакции на величину образующегося зазора во вращательной паре  [c.340]

Механические явления, происходящие в пространстве, по разному фиксируются в различных координатных системах. Наблюдатели, связанные е различными системами координат, будут воспринимать по разному одно и то же объективное механическое явление. Поэтому главным вопросом кинематики сложного или относительного движения является установление связи между кинематическими величинами, характеризующими одно и то же механическое явление в двух различных координатных системах, имеющих взаимное относительное движение. Кинематические характеристики взаимных движений этих координатных систем надо полагать известными. Одну из этих систем будем условно называть неподвижной системой. Вторую, соответственно этому, будем называть подвиокной. Условность этих терминов очевидна. Обе системы. твижутся в пространстве относительно иных координатных спаем.  [c.130]

Принцип суперпозиции. Для механической цепи, состоящей из линейных двухполюсников и имеющей несколько источников сил или кинематических величин, результат воздействия всех источников может быть получен как сумма результатов воздействия каждого из источников в отдельности, при этом остальные источники должны быть заменены двухполюсниками, имеющими динамические параметры заменяемых источников. Прямые динамические параметры идеального источника силы равны нулю, а обратные — бесконечности. У идеального источника кинематической величины прямые динамические параметры равны бесконечности, а обратные — нулю. В силу конечной отдаваемой мощности реальных источников значения динамических параметров лежат между указанными предельными. Реальный источник силы при отсутстйии создаваемой им силы может оказывать сопротивление Движению, поэтому его изображают в виде параллельного соединения идеального источника силы и некоторого пассивного двухполюсника (рис. 18, а). Реальный источник кинематической величины при отсутствии создаваемого им движения может допускать относительное перемещение полюсов, поэтому его изображают в виде последовательного соединения идеального источника и некоторого пассивного двухполюсника с конечными динамическими параметрами (рис. 18, б).  [c.53]

Матрица контуров представляет собой матрицу коэффициентов уравнений Кирхгофа для кинематических переменных двухполюсников цепи (42). Для практики наиболее важны основные контуры графа, позволяющие получать совместную систему независимых уравнений кинематических величин. Основные контуры графа относительно опорного дерева Т представляют собой е — -f I контуров, образованных каждой хордой и ее единственным путем в дереве Т между вершинами этой хорды. Направление основного контура выбирают совпадаюищм с направлением хорды. Матрицу В/ основных контуров составляют в соответствии с принятой последовательностью индексов хорд и ветвей дерева Т, причем строки должны следовать также в порядке следования порождающих их хорд  [c.60]


Задачей полного анализа механической цепи является определение всех кинематических величин, характеризующих абсолютное и относительное Движение полюсов в принятой системе отсчета (полюсные переменные и переменные двухполюсников), и воспринимаемых элементами цепи сил. При stom ставится задача определения как величины (размера), так и знака искомых величин. Знание знака относительных переменных двухполюсника эквивалентно знанию характера движения полюсов (сближение или удаление) и характера приложенных сил (сжимающие или растягивающие), см. раздел 3. Зная перечисленные выше величины, можно определить другие величины — силы между узлами и функции цепей (коэффициенты передачи сил и кинематических величин, прямых и обратных параметров участков цепи).  [c.64]

Чувствительности измерительной системы к различным кинематическим величинам по перемещению б и скорости V приведены в связи с тем, что используемые в датчиках инерционного действия физические преобразователи реагируют на относительное перемещение б или относительную скорость 1 (см. гл. VIII, IX), На рис. 7 приведены схемы датчиков инерционного действия с параметрическими и генераторным механоэлектрическими преобразователями. В параметрических преобразователях изменения индуктивности L, емкости С и сопротивления г пропорциональны относительному перемещению 5 инерционного элемента. В генераторном электродинамическом преобразователе генерируемое напряжение е пропорционально скорости катушки, укрепленной на инерционном элементе, относительно магнита, прикрепленного к корпусу датчика (е пропорционально относительной скорости V).  [c.144]

В главе VIII рассмотрены принципы преобразования ряда механических величин (силы, напряжения, относительных перемещения и скорости, деформации) в электрический сигнал, которые можно использовать при электрическом измерении этих величин. Для решения конкретных измерительных задач механоэлектрическому преобразователю придают определенный констр ктивный вид с учетом особенностей измерения и дополняют его узлами, обеспечивающими преобразование механической величины в заданную электрическую форму с наименьшими потерями и наибольшей точностью. Конструктивно выделенная совокупность преобразовательных элементов, воспринимающих от объекта измерения механическую величину, функционально связанную с измеряемой физической величиной, и вырабатывающих сигнал измерительной информации в электрической форме, образует электрический датчик механической величины. В настоящей главе рассмотрены общие вопросы по-строепия датчиков механических величин, их основные метрологические характеристики, области и некоторые особенности применения. Основное внимание уделено датчикам, применяемым для измерения величин, непосредственно характеризующих вибрацию, т. е. датчикам кинематических величин.  [c.212]

Датчики кинематических величин могут быть датчиками характеристик относительного или абсолютного движения В первом случае измерение ведется относительно системы отсчета, связанной с материальным объектом, на движение которого не накладывается никаких ограничений. Однако датчики относительного виброускорения, как правило, не конструируют ввиду отсугствия МЭП, воспринимающих ускорение. Поэтому все акселерометры, ие использующие дополнительного дифференцирования, измеряют абсолютное ускорение (ускорение в инерциальной системе отсчета) и являются приборами инерционного действия, имеющими чувствительный элемент в виде упруго закрепленной массы.  [c.220]

Датчики абсолютной скорости инерционного действия по механической схеме близки к акселерометрам и отличаются тем, что МП должен преобразовать силу инерции в кинематическую величину — скорость, перемещение или деформацию (так как упругая сила не может быть мерой скорости, см. гл. VII). В одном из возможных режимов работы выходной сигнал МП (перемещение или деформация) пропорционален виброскорости объекта, что возможно в некотором диапазоне частот по обе стороны от собственной частоты механической системы. Ширина диапазона практически пропорциональна относительному демпфированию в датчике. Такой квазирезонанс-ный режим пока можно получить только в низкочастотной области и в ограниченном интервале температур [42]. Квазирезонанснып режим возможно создать не на механической, а на электрической стороне датчика с помощью схем коррекции сигнала. Оба варианта датчика близки по параметрам Собственная частота (которая в данном случае характеризуется не максимумом АЧХ, а переходом ФЧХ через значение 90 ) 20—30 Гц. Меньшая собственная частота дает выигрыш в чувствительности, ио приводит к зависимости характеристик датчика от положения в поле земного тяготения из-за статического прогиба. Подвижную систему подвешивают на плоских пружинах, обеспечивающих ее одномерное перемещение. Верхняя граница рабочего диапазона достигает нескольких сот герц. Она ограничивается не только возможностями демпфирования, но и наличием высших собственных частот механической системы, ярко выраженных для этого типа подвеса.  [c.224]

Испытания на изгиб и кручение часто более удобны для определения реологических постоянных, чем испытания на простое растяжение. При реологических испытаниях наблюдаемыми кинематическими величинами редко являются непосредственно деформация или скорость деформации. Чаще это смещение или скорость смещения. При простом растяжении, где деформация является чистой, полное смещение есть сумма элементарных смещений. При изгибе стержня, где имеет место новорот элементов, смещения возрастают по длине стержня, как у вращающейся стрелки какого-либо измерительного устройства. Возьмем, к примеру, в одну руку конец небольшого стержня из какого-либо упругого материала и приложим второй рукой к другому концу некоторую силу. Если сила будет растягивающей в направлении оси стержня, то перемещения свободного конца будут едва заметны. Если сила приложена ла свободном конце в направлении, перпендикулярном к оси, то в этом случае перемещения будут заметны при условии, что стержень не слишком жесткий. Чтобы сделать этот пример более определенным, предположим, что стержень изготовлен из мягкой стали с квадратным поперечным сечением площадью в 1 мм и длиной 10 см. Прикладывая растягивающую силу в 100 г, получили относительное удлинение, согласно равенству (III, т), ei = = 3 10 см и, следовательно, в соответствии с формулой (III. 9) перемещение свободного конца равно Ai = 3-10 см. Прикладывая ту же силу в направлении, перпендикулярном к оси, найдем, что перемещение будет таким же, как в центре опертой по обоим концам балки двойной длины при приложении удвоенной силы. Это перемещение в соответствии с формулой (IV. 25) равно  [c.92]

Для определения движения частей тела указаний о поведенда одной только его точки недостаточно. Нужно вводить новые кинематические величины, которые определяли бы изменения состояния всего тела в целом, возникающие в результате относительного движения частей этого тела.  [c.146]

Вращение от фрезерной оправки 14 с помощью шкива 1, натяжных роликов и стальной ленты передается на входную ось 2 прибора. Далее враш,енне передается через ряд постоянных и сменных фрикционных роликов 5—7 и 9 на выходную ось 8 прибора. На этой же оси свободно посажен диск 11, который получает вращение, с помощью стальной ленты, от диска 13, жестко закрепленного на столе станка. Контролируемая погрешность кинематической цепи станка на участке от о эрезерной оправки до стола станка определяется по величине относительного поворота диска 9 и оси 8 по отношению к диску И. Эти смещения действуют на датчик 10 и регистрируются электроиндуктив-кым самопишущим прибором. Зтот прибор позволяет с высокой точностью  [c.497]


Но согласно теории относительности, заслуживающей более точного, по мнению академика В. А. Фока, термина хроногеометрии , между геометрическими и кинематическими величинами, характеризующими движение, появляются дополнительные соотношения (соотношения Лоренца), возникающие не вследствие силовых воздействий, а вследствие только взаимного расположения и взаимного движения объектов, участвующих в данных движениях и их наблюдениях.  [c.14]

Переменные параметры, с помощью которых мы определяем положение системы, как известно, носят название обобщенных координат. В открытой цепи в качестве обобщенных координа Qi, q ,. .., q-n следует выбирать лннейные ц угловые величины, которые определяют взаимное расположение звеньев кинематических пар цепи. Для поступательной пары это изменяемый размер / вдоль оси пары, а для вращательной пары — это угол относительного поворота звеньев пары k и k—. Так, например, в качестве обобщенных координат qi,  [c.178]

Впервые обратил внимание на эту силу из-за расширения трубки тока фазы X. А. Рахматулин (см. ссылку [21] гл. 1). В общем случае из-за мелкомасштабных пульсаций давления Ajaj в силе имеются дополнительные составляющие, зависящие от структуры смеси, такие как сила присоединенных масс при ускоренном движении второй фазы относительно первой, сила Магнуса при вращении частиц в жидкости и др., сул1му которых обозначим через Ai 2 i Эту величину следует выражать через средние кинематические параметры (через средние скорости, ускорения фаз и их производные)  [c.79]

Показателем кинематической точное т и является величина максимального колебания угловой скорости колеса за оборот (рис. 25), Эта величина отражает г.чавным образом биение начального цилиндра относительно базовых поверхностей колеса (цапфы, посадочные отверстия).  [c.32]

При заданной внесиней статической нагрузке на толкателе, например силе f,ui> полезного сопротивления, силе F,, упругости пружины для силового замыкания и силе тяжести 6 а толкателя (рис. 17.5,U), реакции в кинематических парах являются зависимыми от угла давления, т. е, от закона движения толкателя и габаритных размеров механизма. Этот вывод легко установить из анализа плана сил, приложенных к толкателю (рис. 17.5, а, б) и формул (12.11) и (12.12). Чем больше угол давления ), тем больше реакции [ гл и в кинематических парах, а следовательно, тем больше силы трения при заданных коэффициентах трения — между башмаком толкателя 2 и кулачком / и — толкателем 2 и направляющими 3. При расчетах сил в кинематических парах для поступательной кинематической пары между толкателем и направляющими используют приведенный коэффициент трения / "Ь, который рассчитывают по величине угла определяющего положение реакции Ftw относительно перпендикуляра к направлению перемещения толкателя.  [c.451]

Кинематической погрешностью зубчатого колеса f,,. к называют разность между действительным и номинальным (расчетным) углами поворота зубчатого колеса на его рабочей оси, ведомого точным (измерительным) колесом при номинальном взаимном положении осей вращения этих колес ее выражают в линейных величинах длиной дуги делительной окружности (рис. 13.4). Под рабочей осью понимают ось колеса, вокруг которой оно вращается в передаче. При назначении требований к точности колеса относительно другой оси (например, оси отверстия), которая может ие совпадать с рабочей ОС1ЛО, погрешность колеса будет другой, что необходимо учитывать при установлении точности передачи. Все точностные требования устаиовлеиы для колес, находящихся на рабочих осях.  [c.305]

Так как угловые скорости звеньев / н 5 ( = йгр,/й(/ и u = ti ps/d/ определяются через углы поворота pi и ср, крестовины относительно координатных осей О и Оу, а векторы О)., и (113.2 всегда перпендикулярны к осям кинематических пар А н Ь и друг другу, то согласно условию (17.13) величина и направление вектора полностью определяют вектор (1)3, так как направление ею задано положением оси вращательной пары D.  [c.218]

Работа машинного агрегата сопровождается динамическими воздействиями его.на окружающую среду. Гфи относительном движении звеньев усилия в кинематических парах изменяются, что приводит к переменному нагружению стойки механизма. Вследствие этого фундамент, на которо.м установлен машинный агрегат, испытывает пиклически изменяют,иеся по величине и направлению силы. Эти силы через фундамент передаются на несущие конструкции здания, соседние машинные агрегаты и приборы и приводят к колебаниям и вибрациям. Неравномерность движения звеньев механизмов приводит к возникновению дополнительных сил инерции. Эти силы увеличивают колебания и вибрации звеньев механизма и машины в целом и сказываются на точности их работы. Если амплитуда колебаний достаточно велика (например, при работе в зоне резонанса), то в деталях звеньев возникают напряжения, превышающие допускаемые, что приводит к их разрушению. Вибрации — это причина выхода из строя деталей самолетов и вертолетов, элементов газовых и паровых турбин, неточностей в работе станков, роботов и т. п.  [c.351]


Смотреть страницы где упоминается термин Кинематические величины относительные : [c.11]    [c.219]    [c.57]    [c.348]    [c.245]    [c.447]    [c.481]    [c.42]   
Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.248 ]



ПОИСК



Величина кинематическая

Величина относительная



© 2025 Mash-xxl.info Реклама на сайте