Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стокса упругое

Сравнивая формулу Стокса (2.287) для оператора Ламе с (2.345), видим, что для задач теории упругости роль объемного потенциала играет интеграл  [c.102]

Дифракция упругих волн. Возникновение и развитие упругой теории света естественно привело к исследованию явления дифракции. Первые работы в этом направлении принадлежат Стоксу (1849, 1852). Он изучал прохождение упругих волн через отверстие в экране и вычислил амплитуду, поляризацию дифрагированных волн на значительном по сравнению с длиной волны расстоянии от препятствия.  [c.10]


Уравнения (1.4) и (1.6) обычно называют уравнениями движения Ламе. Они многократно выводились и использовались в работах по линейной теории упругости Навье (1821), Коши (1828, 1840), Пуассона (1829), Ламе и Клапейрона (1833), Стокса (1845, 1851), Ламе (1852). Приведенные ниже иные формы записи уравнений (1.6) и частные свойства их решений также установлены в отмеченных работах. Глубокий обзор исследований, выполненных на раннем этапе развития теории упругости, приведен в работе [186].  [c.17]

Приведенная здесь ошибочность рассуждений проф. Тимошенко столь же мало умаляет его заслуги и достоинства цитированной книги, как обнаруженная Стоксом ошибочность рассуждений Ньютона, которую мы приводили в параграфе 5 главы II, умаляла заслуги последнего. В действительности, Пойнтинг (1909, 1912 гг.) полвека назад наблюдал, что при действии на стальные и медные цилиндры, имевшие вид длинных проволок, сил, эквивалентных крутящему моменту, они не только закручиваются, как предсказывается классической теорией упругости, но также удлиняются и увеличиваются в объеме. Эти опыты, очевидно, были забыты. Я обратил на них внимание и проанализировал их в своей статье (1954 г.). Увеличение объема указывает на упругую дилатансию. Увеличение длины следует из закона, связывающего на-  [c.356]

Влияние кривизны траектории точки касания катящегося колеса изучено в настоящее время с достаточной полнотой. Первая попытка решения такого рода задачи принадлежит Р. Виллису i). Полное решение задачи для случая стержня, лежащего на двух абсолютно жестких опорах, принадлежит Дж. Стоксу ). Дальнейшее развитие того же вопроса принадлежит Н. П. Петрову. Ему пришла счастливая мысль заменить дифференциальное уравнение уравнением в конечных разностях ) и воспользоваться приближенным решением. Таким путем удалось получить решения для балки, расположенной на двух, четырех и шести упругих опорах. Эти решения с полной ясностью показали, что при совершенно правильных колесах и рельсах кривизна траектории точки касания колеса и рельса не имеет никакого практического значения ). Следовательно, при определении динамических напряжений мы не внесем существенных погрешностей, если от рельса на упругих опорах перейдем к рельсу, при-  [c.335]

В фундаментальной работе Пуассона 1829 г. содержится, помимо указанного выше, немало других важных результатов из общих уравнений теории упругости вновь выведено уравнение для продольных колебаний тонких стержней, раньше полученное Навье (1824 г.), и для их поперечных (изгибных) колебаний, а также впервые дано уравнение для их крутильных колебаний. Там же решена задача о свободных радиальных колебаниях упругой сферы. Эти результаты стали отправными для многочисленных работ, сколько-ни-будь подробное освещение которых возможно лишь в специальном исследовании по истории теории упругости. Здесь достаточно сказать, что этими работами был подготовлен новый этап в развитии теории колебаний, обобщение основных положений, относящихся к линейным колебательным системам с конечным числом степеней свободы, на линейные колебательные системы с бесконечно большим числом степеней свободы. Один из общих результатов такого рода был установлен Стоксом в работе О динамической теории дифракции название которой напоминает о том, что в эту эпоху — эпоху торжества теории упругого светоносного эфира Юнга — Френеля оптика снова содействовала развитию теории колебаний, как и во времена Гюйгенса. Для свободных колебаний системы с конечным числом степеней свободы, вводя нормальные координаты , для изменения каждой из них, получают уравнение вида  [c.277]


Стоксу принадлежит также более детальный анализ двух типов волн, открытых Пуассоном,—безвихревых волн объемного сжатия и расширения и вихревых волн смещений, не сопровождаемых изменением плотности. В 1885 г. Рэлей к этим двум типам волн добавил третий он показал, что вдоль поверх-ности раздела упругих сред могут распространяться волны, скорость которых меньше, чем скорости пуассоновых волн , и не зависит от их периода. Впоследствии выяснилось значение этих волн Рэлея для анализа сейсмических процессов.  [c.278]

Определяющим для последующего развития теории упругости и всей механики сплошной среды явился континуальный подход Коши, разработанный им в 20-х годах. Однако еще раньше толчок для развития теории упругости и гидродинамики вязкой жидкости дали два мемуара Навье, представленные им Парижской академии наук в 1821 и в 1822 гг. В них Навье, следуя П. С. Лапласу и используя феноменологическую молекулярную модель среды, впервые вывел уравнения теории упругости изотропного тела (в смещениях) и уравнения движения несжимаемой вязкой жидкости (так называемые уравнения Навье — Стокса).  [c.48]

Видное место в истории механики сплошной среды занимает Дж. Г. Стокс, давший в 1845 г. вывод уравнений теории упругости, опирающийся на строго континуальный подход (Эйлера — Коши) и естественную гипотезу о линейной зависимости компонент напряжения от компонент деформации. В результате для изотропного тела он получил две упругие постоянные и привел ряд веских соображений в пользу того, что они не могут быть сведены к од-  [c.52]

Многочисленные исследования были посвящены в XIX в. вопросу колебаний упругих тел, в том числе струн, стержней, пластинок и оболочек. Интегралы уравнений колебания упругого пространства для любых начальных условий были даны в конце 20-х годов Д. Пуассоном и М. В. Остроградским. Тогда же Пуассон обнаружил существование двух волн, распространяющихся но изотропному упругому телу с различными скоростями, относящимися как У"Ъ 1. Стокс показал впоследствии что более быстрая волна является продольной волной объемного сжатия материала, а более медленная— поперечной волной вихря смещений, не вызывающей изменения плотности. В упомянутом выше мемуаре Пуассона (1829) рассмотрена и первая конкретная пространственная задача о колебаниях шара. Следует отметить исследо  [c.58]

В тесной связи с вопросами колебаний упругих тел стоят динамические задачи об ударе твердых тел. Первые исследования поведения упругих тел при ударе (в том числе их разрушения) принадлежат еще Т. Юнгу 2. Широкие исследования действия ударной нагрузки были предприняты в связи с запросами железнодорожной практики в Англии в 30-х и главным образом в 40-х годах, когда изучением этого вопроса занялся и Стокс. Однако наиболее замечательные результаты по исследованию как поперечного, так и продольного удара стержней принадлежат Сен-Венану, посвятившему этому вопросу ряд работ, начиная с середины 50-х годов. Окончательное решение задачи о продольном ударе тяжелого тела по стержню было дано в 1882 г.  [c.61]

В конце сборника помещено дополнение. В нем обсуждаются некоторые не нашедшие отражения в основном тексте аспекты практического применения рассматриваемого метода граничных интегральных уравнений [на примере задач гидродинамики несжимаемых идеальной и вязкой (в приближении Стокса) жидкостей и теории упругости] и рассматриваются численные методы решения, близкие к применяемым в сборнике (в частности, вариационные и вариационно-разностные методы).  [c.7]

На основании этой линейной зависимости Дж. Стокс установил еще одно положение, нашедшее широкое применение при решении задач сопротивления материалов и теории упругости. Если между напряжениями и деформациями существует линейная зависимость, то при возрастании напряжений в несколько раз деформации возрастут во столько же раз. Если деформация является результатом действия на упругое тело нескольких систем внешних сил, то ее можно получить, суммируя деформации, вызываемые отдельными системами сил. При этом, конечно, предполагается, что перемещения точек тела настолько малы, что деформации, вызываемые одной системой сил, не вносят изменений в действие другой системы и что при изучении напряженного состояния можно произвольно брать или то расположение точек тела, которое соответствует его естественному состоянию, или то, которое наступает после деформации. Это положение в дальнейшем будем называть принципом сложения действия сил  [c.40]


Все эти экспериментальные исследования, несомненно, послужили мощным толчком к тому, чтобы предпринимать попытки к теоретическим исследованиям по вопросу о составлении дифференциальных уравнений движения жидкости с учётом не только давления", но и внутреннего трения. К этому времени стали открываться возможности для теоретических исследований такого рода в связи с развитием механика упруго деформируемого тела. Накопление исследований и решений конкретных задач по теории изгиба брусьев, по теории кручения стержней и по теории колебаний стержней и пластинок на основе использования закона Гука о пропорциональности напряжений деформациям создало все предпосылки не только к тому, чтобы установить общие уравнения равновесия и колебаний упругих тел, но и к тому, чтобы закон Гука в несколько изменённой форме распространить на жидкость и на основе этого создать дифференциальные уравнения движения жидкости с учётом внутреннего трения. Этим обстоятельством и объясняется тот факт, что создатели математической теории упругости—Навье, Пуассон, Коши, Сен-Венан и Стокс оказались одновременно и создателями математической теории движения вязкой жидкости.  [c.14]

Теория распространения упругих волн в твердых телах создавалась в течение прошлого столетия Стоксом, Пуассоном, Релеем, Кельвином и другими как развитие теории упругости в применении к задачам колебаний, а также для использования в исследованиях по распространению света, рассматривавшегося как колебания упругого эфира. В течение первой четверти текущего столетия физики пренебрегали этим предметом частично потому, что их внимание привлекали новые области, открывшиеся в связи с появлением атомной физики, частично же вследствие того, что теория во многих отношениях опережала экспериментальные исследования, так как тогда не было методов, удобных для наблюдения процесса распространения волн напряжения в лабораторных условиях.  [c.5]

Теория поперечных упругих волн в твердых телах была впервые разработана Навье [99] и несколько позже, более строго, Пуассоном [112]. Примерно в то же время опубликована теория Френеля о поперечных колебаниях в световых волнах. Так как до этого вопрос о поперечных колебаниях, распространяющихся внутри среды, не рассматривался вообще, последующее развитие теории упругих волн имело тенденцию увязываться с развитием теории распространения света (Стокс [136], Кельвин [70]).  [c.22]

В 14 даны формулы Стокса для разложения, при весьма общих условиях, вектора упругого смещения на два составляющих вектора первый, связанный с изменением объёма, есть градиент скалярного потенциала второй, представляет ротацию некоторого соленоидального вектора.  [c.114]

Массовые силы следует рассматривать как заданные внешние силы поверхностные же силы зависят от скорости, с которой жидкость деформируется в рассматриваемом поле скоростей. Совокупность сил определяет напряженное состояние тела. Для дальнейшего нам необходимо знать связь между напряженным состоянием и скоростью деформации тела. Эта связь может быть установлена всегда только эмпирически. Мы ограничимся рассмотрением только изотропной ньютоновской жидкости, для которой можно принять, что указанная связь линейная. Все газы, а также многие жидкости рассматриваемые в теории пограничного слоя (в частности — вода), принадлежат к этому классу. Жидкость называется изотропной, если связь между составляющими напряженного состояния и составляющими скорости деформации одинакова во всех Направлениях. Жидкость называют ньютоновской, если для нее указанная связь линейна и жидкость подчиняется закону трения Стокса. В случае изотропного упругого твердого тела эксперимент показывает, что напряженное состояние зависит от величины самой деформации. Большая часть инженерных материалов подчиняется линейному закону Гука, который в известной мере аналогичен закону трения Стокса. А именно, в то время как связь между напряженным и деформированным состояниями в изотропном упругом теле содержит в себе две постоянные, характеризующие свойства рассматриваемого материала (например, модуль упругости и коэффициент Пуассона), связь между напряженным состоянием и скоростью деформации в изотропной ньютоновской жидкости содержит только одну-единственную постоянную (коэффициент вязкости р.), правда, до тех только пор, пока внутри жидкости не возникают явления релаксации, о чем будет сказано в 5 настоящей главы,  [c.56]

Движение жидкости в природе совершается под действием различных сил тяжести, давления, трения (сопротивления), поверхностного натяжения, упругости. Каждая из этих сил выражается через физические величины (размерные коэффициенты), характеризующие природу сил и жидкости. Влияние указанных сил проявляется в неодинаковой степени в различных явлениях. Одни явления протекают под преобладающим действием сил тяжести и сопротивления, другие — сил тяжести, сопротивления и поверхностного натяжения или только сил тяжести, поверхностного натяжения и т. д. Условия гидродинамического подобия модели и натуры требуют равенства в них отношений всех сил, под действием которых протекает явление. Рассмотрим возможность такого равенства. Для этого, используя уравнение Навье—Стокса для установившегося одноразмерного движения, напишем уравнения относительно оси X для натуры и модели, введя масштаб модели I с соответствующими значками (Хд — масштаб массовых сил Ар —масштаб плотности Хр — масштаб сил давления Хи — масштаб скоростей Х — масштаб коэффициента кинематической вязкости Х1—масштаб длин)  [c.502]


К спорным вопросам методики изложения, принятой в настоящем курсе, мы относим, например, предлагаемый авторами способ вывода общего уравнения энергии на основе первого начала термодинамики ( 4-2). Нам представляется, что традиционный способ использования первого начала термодинамики при выводе уравнения энергии, принятый в лучших отечественных курсах газовой динамики, является более корректным и дает возможность яснее представить сущность делаемых при этом термодинамических допущений. Недостаточно ясна с математической точки зрения трактовка понятий материального метода и метода контрольного объема в 3-6. Оба метода опираются на эйлерово представление о движении жидкой среды. Их противопоставление, как нам кажется, носит иногда искусственный характер. При выводе общих уравнений движения вязкой жидкости — уравнений Навье — Стокса — авторы, видимо, следуя Г. Шлихтингу , опираются на аналогию с напряженным состоянием упругого тела. При этом предполагается знание читателем некоторых вопросов теории упругости. Вряд ли такой способ вывода фундаментальных гидродинамических уравнений будет удобен для любого читателя. Еще одним спорным в методическом отношении местом является то, что изложение теории турбулентного пограничного слоя опережает изложение представлений о турбулентном течении в трубах. Между тем, как известно, теория пограничного слоя использует некоторые зависимости, устанавливаемые при изучении течений в трубах. Поэтому, может быть, естественнее начинать изложение вопроса  [c.7]

В работах Пуассона (1828) и Стокса (1849) четко установлена возможность существования в неограниченной изотропной упругой среде двух типов волн, распространяющихся с различной скоростью. Одна из них характеризуется безвихревым изменением объема (безвихревая продольная волна), другая связана с искажением формы (эквиволюмиальная поперечная волна). Открытие этих типов волн способствовало появлению трудностей в толковании исходной гипотезы Френеля. Особенно сильно эти трудности проявились при рассмотрении задачи об отражении и преломлении плоских волн на границе раздела двух упругих сред. В работах Коши (1830— 1836) и Грина (1839) установлено, что для выполнения шести граничных условий, выражающих непрерывность смещений и напряжений на границе раздела, необходимо учитывать как поперечные, так и продольные волны. Однако продольные световые волны в экспериментах не были обнаружены. Интересно, что открытые Рентгеном (1895) новые лучи вначале отождествлялись рядом физиков (в том числе и автором открытия) с продольными световыми волнами.  [c.9]

Годом позже профессор Джордж Габриель Стокс прочел доклад от имени Хомерсема Кокса, который предположил, что те же самые экспериментальные данные из отчета комиссии по железу лучше соответствуют зависимости, названной им гиперболическим законом упругости  [c.110]

Иавье — Стокса уравнения движения вязкой яшдкости 368 Павъе уравнения теории упругости 101, 286, 341 Начальные деформации в нелинейных задачах 346  [c.487]

Подобно Росси, Файлон и Джессоп пробовали согласовать показательные кривые с их кривыми времени растяжения и времени оптического отставания, исходя из предварительной теории, согласно которой напряжение состоит из двух частей упругой и вязкой. Подобное смешанное напряжение возникло бы, если бы мы предположили, что материал состоит из смеси упругого твердого тела и вязкой жидкости, причем первое образует, так сказать, каркас, промежутки которого плотно заполнены вторым. Делая дальнейшее предположение, что гидростатическое давление" в уравнении Стокса для движения вязкой жидкости должно быть пропорциональным приложенному растяжению Т и равным 7Г, где 7 есть некоторая постоянная величина, они пришли к нижеследующим уравнениям для деформации s и относительного отставания г на единицу толщины  [c.231]

В 1850 г. в Эдинбургском королевском обществе Максвеллом был прочитан доклад О равновесии упругих тел ( Оп the equilibrium of elasti solids ). Автор начинает в нем с критики теории малого числа упругих постоянных, ссылаясь при этом на работу Стокса ), и выводит уравнения равновесия изотропных тел, применяя две упругие постоянные. Он использует затем уравнения для рассмотрения некоторых частных задач. Большая часть их была уже решена раньше другими авторами, но никто из них до сих пор еще не уделял такого внимания опытной проверке теоретических результатов. Он останавливается на случае полого цилиндра, наружная поверхность которого неподвижна, внутренняя же поверхность приводится во вращательное движение на малый угол ой парой, момент которой равен р. . Используя уравнения равновесия в полярных координатах, он без труда показывает, что в этих условиях возникают касательные напряжения и что их величина обратно пропорциональна квадрату расстояния рассматриваемой точки от оси цилиндра.  [c.323]

Одно из самых существенных соображений, говорящих в пользу закона Гука и распространяющих этот закон на те случаи, когда части деформируемого тела находятся в движении, было высказано Джорджем Габриелем Стоксом. Он показал, что свойство упругих тел совершать изохронные колебания есть следствие того, что напряжения, возникающие в теле при малых деформациях, являются линейными функциями этих деформаций.  [c.40]

Разработку новых методов интегрирования дифференциальных уравнений динамики мы находим главным образом в трудах Гамильтона, французского ученого Пуассона (1781—1840) и выдающегося немецкого математика Якоби (1804—1851). В связи с прогрессом машиностроения, железнодорожной и строительной техники, с необходимостью исследования -движения тел в сопротивляющейся среде в XIX в. и в особенности в текущем столетии весьма быстро и успешно развивается механика сплошной среды — гидро- и аэромеханика и теория упругости. Развитие этих разделов теоретической механики, представляющих собой в настоящее время обширные самостоятельные дисциплины, связано с именами таких крупнейших ученых, как Пуассон, Ляме, Навье, Коши, Сен-Венан (во Франции), Гельмгольц, Кирхгоф, Клебш, Мор, Прандтль (в Германии), Стокс, Грин, Томсон, Рэлей (в Англии) и многих других.  [c.22]

Исторически, первой большой работой такого характера следует считать исследования Вольтерра, посвященные задаче Коши для уравнений теории упругости (см. Уо11егга [1]). Основную роль в этой работе играют специальные решения уравнений теории упругости, представляющие смещения бесконечного пространства под воздействием сосредоточенной в точке х ) силы, равной (0, где б ( )—функция времени Дирака они были найдены Стоксом,  [c.343]

Понятия о напряжении и деформации были установлены Кошп около 1822 г. Вместе с теорией потенциала, теорией функций комплексного переменного, вариационным исчислением и законом сохранения энергии эти понятия составили фундамент, на котором в течение XIX в. были построены начала математической теории упругости и классической гидромеханики силами, главным образом, Навье, Пуассона, Грина, Стокса, Кирхгофа, Гельмгольца, Сен-Венана, Буссинеска, Максвелла, Кельвина, Рэлея, Лява, Лэмба и других2). В 1882 г. Отто Мор опубликовал свою первую статью о графическом представлении напряженного состояния, указав в дальнейшем, что его графический метод приложим также и в анализе распределения моментов инерции в твердых телах.  [c.172]


Пуассон (Poisson ) Симеон Дени (П81- ЪА0) — французский математик, механик и физик. Окончил Политехническую школу в Париже (1798 г.). Сформулировал частный случай закона больших чисел и одну из предельных теорем теории вероятностей предложил названное его именем распределение вероятностей случайных величин. Разработал математическую теорию электростатики, обобщил уравнения Навье — Стокса на случай сжимаемой ияэкой жидкости с учетом теплопередачи, обобщил уравнения теории упругости па анизотропные среды, решил ряд задач теории упругости, ввел скобки Пуассона и доказал ряд важных теорем динамики. В теории потенциала изучил носящее его имя уравнение. Доказал устойчивость планетных движений. Написал Курс механики (1811 г.), многократно переиздававшийся.  [c.108]

Навье (Navier) Луи Мари Лнри (1785-1836) — французский ученый в области математики н механики, одни из основоположников теории упругости (теория изгиба бруса и пластинок, 1821 г.), гидродинамики вяз-Кой жидкости (уравнение Навье — Стокса, его частное решение с помощью метода Фурье). Окончил Политехническую школу (1804 г.) и Школу мостов и дорог (1806 г.) в Париже. Опубликовал (1826 г.) первый курс сопротивления материалов.  [c.361]


Смотреть страницы где упоминается термин Стокса упругое : [c.593]    [c.214]    [c.182]    [c.404]    [c.128]    [c.382]    [c.69]    [c.104]    [c.587]    [c.275]    [c.276]    [c.276]    [c.277]    [c.173]    [c.397]    [c.60]    [c.662]    [c.572]    [c.552]    [c.24]   
Первоначальный курс рациональной механики сплошных сред (1975) -- [ c.260 ]



ПОИСК



Стокс

Стокса линейной упругости

Стокса — Дюгема — Фурье упругая жидкость

Стокса — Дюгема — Фурье упругие напряжения

Стокса — Дюгема — Фурье упругий материал

Стокса — Дюгема — Фурье упругое тело

Стокса — Дюгема — Фурье упругость линейная



© 2025 Mash-xxl.info Реклама на сайте