ПОИСК Статьи Чертежи Таблицы Рассмотрим движения систем, на которые наложены неголономные связи. В предыдущей главе уравнения движения систем при наличии неголономных связей подробно не рассматривались. Дело в том, что в этих случаях метод Лагранжа связан с необходимостью применения систем координат, в которых число дифференциальных уравнений движения превышает число степеней свободы системы. Разность между числом дифференциальных уравнений движения и числом степеней свободы системы равна числу неголономных связей, наложенных на точки системы. Основным содержанием настоящей главы является рассмотрение некоторых особых способов преобразования дифференциальных уравнений движения, которые позволяют описать движение материальной системы с неголономными связями системой дифференциальных уравнений, число которых равно числу степеней свободы системы. [Выходные данные]