Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растяжение Характеристики разрушения

МАКРОСКОПИЧЕСКИЕ ХАРАКТЕРИСТИКИ РАЗРУШЕНИЯ В УСЛОВИЯХ ОДНООСНОГО РАСТЯЖЕНИЯ  [c.51]

Все другие механические свойства в большей или меньшей степени структурно, чувствительны и анизотропны. Резкая анизотропия упругих и других механических характеристик присуща многим неметаллическим материалам, что определяется их ориентированным строением. Некоторая анизотропия свойственна и большинству металлических материалов. Уровень прочности, пластичности, выносливости и характеристик разрушения обычно в продольном направлении относительно оси деформации полуфабриката выше, чем в поперечном. Однако для некоторых, например титановых, сплавов характерна обратная анизотропия. Наблюдается значительная разница в пределах текучести при растяжении и сжатии у большинства магниевых деформируемых сплавов  [c.46]


Например,-критерий типа (4.9), как отмечалось выше, не способен отразить влияние двухосных равных растяжений на сопротивление разрушению. В то же время необходимо иметь в виду, что в материале с пониженными. характеристиками пластичности и повышенным сопротивлением деформированию напряженность металла в зонах микронеоднородности сохраняется длительное время, увеличивая вероятность преждевременных (по сравнению с оценками по результатам испытаний при одноосном растяжении) хрупких разрушений при сложном напряженном состоянии. Это является еще одним подтверждением  [c.139]

На рис. 2.6 схематически показан вид зависимостей <т(е), полученных при непрерывном растяжении до разрушения и растяжении с промежуточными разгрузками напряжений до нуля и последующими нагружениями. Там же изображены плотности вероятности распределения/(о ), построенные при помощи выражения (1.35) по кривым повторного растяжения, и Уь(а ) - для непрерывного растяжения. Фактически промежуточные функции распределения /(о ) представляют собой стадии изменения этой характеристики во время пластической деформации от/о(о ) до /з(а ).  [c.66]

При растяжении материала при постоянной температуре и с постоянной скоростью определяют соотношение напряжение — деформация, а также относительное удлинение при разрыве и относительное сужение. В общем эти прочностные свойства отличаются от свойств, определяемых при ползучести, однако начальная скорость деформации и результирующее напряжение находятся просто в обратном соотношении по сравнению с соотношением этих параметров при ползучести. В основном этот вид деформации характеризуется теми же явлениями направленной деформации и характеристиками разрушения, что и ползучесть. Но существуют различия в методах испытания, заключающиеся в том, что испытания на ползучесть осуществляют при сравнительно низких напряжениях, низкой скорости деформации в течение длительного времени. В отличие от этого кратковременные испытания на растяжение осуществляют при довольно высоких напряжениях, высокой скорости деформации.  [c.13]

Если классифицировать указанным образом явления, характеризующие высокотемпературную прочность, до можно отметить, что самыми существенными являются не зависящие от времени прочностные свойства при высокотемпературном растяжении,. мало- и многоцикловой усталости- Кроме того, существенным является ползучесть при постоянном напряжении, зависящая от времени, и ползучесть при циклическом изменении напряжения, проявляющая дополнительно специфический эффект циклического изменения температуры. Таким образом, характеристики деформации при высокотемпературном растяжении и термическом скачке деформации, а также характеристики разрушения при высокотемпературной и термической усталости, определяемые при условиях сочетания или наложения влияния напряжения и деформации, времени и температуры, не обязательно выражаются основными свойствами. Они во многих случаях про являют специфические характеристики деформации и сопротивления разрушению из-за взаимного влияния. Вероятно, в некоторых случаях имеются отклонения характеристик прочности от указанного на схеме положения (характеризуемые, например, линейным законом накопления повреждений).  [c.18]


Диаграмма деформирования и характеристики разрушения. Для анализа характеристик сопротивления деформированию и разрушению используют соответствующие диаграммы, получаемые при механических испытаниях гладких образцов, образцов с концентрацией напряжений и образцов с трещинами [2, 16—18]. При традиционных стандартизованных методах испытаний на растяжение плоских (например, по рис. 2) и цилиндрических гладких образцов ад = 1) чаще всего выполняют построение диаграммы растяжения — зависимости между растягивающим усилием Р и удлинением образца М Д/ получают измерением исходной базы l(s (Р — 0) и /, соответствующей нагрузке Р  [c.12]

Анизотропия характеристик разрушения обусловливается либо наличием преимущественных кристаллографических ориентировок (вследствие анизотропии монокристаллов), либо волокнистым строением металлических изделий при наличии в структуре вытянутых хрупких структурных составляющих и включений. При растяжении вдоль включений (вдоль направления горячей деформации) их влияние до образования шейки проявляется слабо, главным образом, за счет концентрации напряжений около контура включений. После образования шейки, в результате возникновения объемного напряженного состояния, ослабляющее влияние включений проявляется сильнее за счет воздействия на них поперечных напряжений. В случае растяжения в поперечном направлении включения существенно уменьшают эффективное рабочее сечение образца, и их влияние проявляется уже в упругой области и на стадии начальной пластической деформации и может произойти хрупкое или малопластичное разрушение вследствие воздействия растягивающих напряжений по поверхности металл — включение.  [c.336]

Методы оценки материалов по характеристикам разрушения, чувствительные при одних условиях, могут оказаться малочувствительными при других. Так, для высокопрочных сталей с 0в 200 кгс/мм при испытании на растяжение образца с центральной сквозной трещиной получают более контрастные характеристики разрушения, чем при изгибе. Для сталей с меньшей прочностью и для алюминиевых сплавов изменение способности к торможению разрушения выявляется более резко при испытании образцов с трещиной на изгиб, чем на растяжение, хотя испытание на растяжение и позволяет выявить непосредственно прочность образцу с трещиной.  [c.6]

Более интенсивное развитие процесса разрушения и большее влияние трещин на характеристики разрушения при двухосном растяжении по сравнению с одноосным может вызываться следующими причинами а) особенностью напряженного состояния при двухосном растяжении, при котором в любом направлении действуют растягивающие напряжения, т. е. отсутствуют направления с нулевым (или близким к нулю) значением растягивающих напряжений, что имеет место при одноосном растяжении.  [c.39]

Характеристики разрушения ч. 2. 40 Растяжение двухосное ч. 1. 93—94  [c.364]

Для оценки влияния изменения знака напряжения на характеристики разрушения большинство образцов при испытаниях на растяжение после предварительного сжатия были доведены до поломки. Отношение времени до разрушения при растяжении после сжатия ко времени до поломки при растяжении без предварительной выдержки условно принято за повреждаемость вследствие такой выдержки.  [c.51]

В сериях предварительных экспериментов на гладких цилиндрических образцах в условиях растяжения в диапазоне температур от —268,8 до +20°С для стали в исходном состоянии получены следующие характеристики предел текучести ат = сто,2, предел прочности, равномерное удлинение, истинное разрушающее напряжение 5к, предельная деформация е/. Такие же характеристики при Г = —196, —100, —60 °С получены для предварительно деформированного состояния стали. По результатам экспериментов была построена зависимость критического напряжения хрупкого разрушения 5с (найденного с учетом мно-  [c.100]

Таким образом, проведенные исследования позволили отклонить предположения о разрушении металла коллектора в результате снижения малоцикловой прочности или коррозионного растрескивания. Необходимо подчеркнуть, что и по другим характеристикам, таким, как хрупкая прочность, сопротивление усталостным разрушениям на стадии зарождения и развития трещин на воздухе и в коррозионной среде, были подтверждены высокие показатели, при которых преждевременное разрушение коллектора не должно было бы произойти. Вместе с тем, эксперименты по замедленному деформированию (растяжение гладких образцов с малой скоростью деформирования) в коррозионной среде показали, что при составе среды, соответствующей отклонениям, имевшим место в процессе эксплуатации разрушившихся коллекторов (низкий водородный показатель pH, присутствие кислорода), может происходить значительное снижение пластичности стали, причем тем большее, чем ниже скорость деформирования. Такая закономерность соответствует зависимости критической деформации от скорости деформирования в условиях ползучести материала (см. гл. 3). Данное обстоятельство привело к необходимости изучения возможных временных процессов деформирования материала коллектора при стационарном нагружении. Выполненные эксперименты, ре-з льтаты которых будут представлены ниже, показали, что  [c.328]


Величины механических характеристик могут быть получены в лабораторных условиях доведением образцов до разрушения или чрезмерной деформации. Наиболее распространены испытания на растяжение и сжатие, так как они относительно просты, дают результаты, позволяющие с достаточной достоверностью судить о поведении материалов и при других видах деформации. Часто целью испытаний является определение твердости и ударной вязкости.  [c.131]

Диаграмма сжатия образца из хрупкого материала показана иа рис. 93, б. Основными характеристиками хрупкого материала при сжатии является предел прочности, обозначаемый и относительная остаточная деформация при разрушении Предел прочности при сжатии хрупких материалов оказывается значительно выше, чем при растяжении, т. е, хрупкие материалы сопротивляются сжатию значительно лучше, чем растяжению.  [c.137]

Диаграмма растяжения содержит гораздо больше информации о свойствах материала, чем определяется по ГОСТу 1497 и др. При оценке механических характеристик металла при диагностировании аппарата и в исследовательских работах эта информация должна извлекаться по возможности более полно. Это дает ряд тонких характеристик материала, реагирующих на такие изменения в структуре, которые, не меняя стандартных, параметров (а , Og, й, v /), сказываются, например, на склонности к хрупкому разрушению, усталостной прочности и т.п.  [c.284]

Диаграмма растяжения хрупкого материала (рис. 224) значительно отличается от диаграммы для пластичного материала. Площадка текучести отсутствует разрушение образца происходит при весьма малых остаточных деформациях, без образования шейки. Основной механической характеристикой является предел прочности.  [c.220]

Мы будем рассматривать только хрупкое разрушение, не сопровождающееся значительным пластическим течением. Проще всего получить характеристики прочности при одноосном сжатии и одноосном растяжении. Необходимо осуществить переход от характеристик прочности при одноосном напряженном состоянии к характеристикам прочности при произвольных сложных напряженных состояниях.  [c.65]

В зависимости от вида нагружения (растяжение, сжатие, изгиб, кручение, срез) и условий воздействия (температура, скорость, периодичность и время приложения) материалы принято характеризовать различными мерами сопротивления их деформации и разрушению — характеристиками механических свойств.  [c.46]

Растяжение образца термопластичного полимера сопровождается образованием шейки. Однако в этом случае (в отличие от металлов) шейка постепенно распространяется на всю рабочую часть образца. Происходит это либо при постоянной, либо при слабо возрастающей нагрузке, см. участок СП на диаграмме, рис. 2.12. Далее сопротивление образца вновь начинает увеличиваться. Полная деформация к моменту разрушения нередко достигает сотен процентов. Характеристики прочности и пластичности полимеров в большей степени зависят от скорости деформирования, чем аналогичные  [c.65]

Для проведения испытаний на разрыв и сжатие применяют специальные устройства (разрывные машины, испытательные прессы, динамометры). Разрывная машина имеет "зажимы, в которых закрепляется испытуемый образец, подвергающийся действию постепенно возрастающей нагрузки, а также устройства для измерения действующего на образец усилия и дес рмации образца. Более совершенные машины снабжаются устройством, автоматически вычерчивающим график зависимости деформации образца от значения действующего на него усилия вплоть до момента разрушения образца. Для испытаний материалов применяются разрывные машины самых различных размеров, рассчитанные на нагрузки от сотых долей ньютона (например, динамометры для определения прочности волокон) до многих килоньютонов. Требования к ним излагаются в ряде стандартов. Так, разрывные машины, применяемые при испытании пластмасс на растяжение, должны по своим техническим характеристикам удовлетворять требованиям стандарта ГОСТ 20480—75. Разрывные машины могут иметь привод — ручной или от электродвигателя. Электропривод предпочтительнее, так как он дает возможность более плавно, без рывков, повышать нагрузку с определенной скоростью.  [c.150]

Схема температурных зависимостей механических свойств при статическом растяжении представлена на рис. 3.1. На ней, так же как и на рис. 1.5, приведены зависимости истинного сопротивления разрыву 5к, предела прочности Sb, предела текучести St, сужения шейки if) и доли вязкой части излома в месте разрушения F . Эта диаграмма детализирует приведенные в 1 температурные зависимости в связи с характеристиками вязкости разрушения Ki - В области хрупких разрушений они описываются закономерностями линейной механики разрушения, основные понятия которой изложены выше. Предельные значения коэфф --10  [c.40]

Кляйн и Меткалф [10] изучали влияние поверхности разделана прочность композита А16061—В с волокнами диаметром 140 мкм при поперечном растяжении. Характеристики поверхности они изменяли путем предварительного отжига при 811 К, после чего матрицу подвергали термической обработке Т-6 (закалка образцов композита в воду и старение при 450 К). Поперечная прочность и тип разрушения характеризуются в табл. 2 (в основном, средними значениями для трех образцов). Авторы оценивали вклад трех типов разрушения расщепления волокна, разрушения по поверхности раздела волокно—матрица или в зоне взаимодействия и разрушения по матрице. Частичное разрушение по матрице должно наблюдаться во всех образцах композитов, так как матрица образует из волокон непрерывный каркас, вое-  [c.217]


Для изотропных материалов экспериментально было обнаружено, что энергия, затраченная на продвижение трещины, относительно постоянна. Поэтому большая часть усилий была сконцентрирована на изучении различных методов вычисления затраченной энергии, причем игнорировалось обоснование сделанного выше упрощения. Анализ энергетического неравенства (И) показывает, что левая часть (11) постоянна тогда и только тогда, когда Цравая. часть неравенства является функцией одного параметра. Это на самом деле соответствует случаю изотропного разрушения, когда под действием любого сложного плоского нагружения наблюдается неустойчивый рост трещины в направлении, ортогональном направлению максимального нормального напряжения около кончика трещины (например, см. работу [15]). Иначе говоря, в изотропном материале со случайно распределенными трещинами равной длины (рис. 9) только трещина, перпендикулярная действию нагрузки, является критической и только один вид испытания — растяжение в направлении, перпендикулярном трещине,— необходим для определения характеристики разрушения такого материала.  [c.228]

Полные обзоры и сравнительный анализ механических свойств при низких температурах большинства металлов и сплавов, имеюнщх практический интерес, приведены в работах [40—42]. В большинстве случаев в качестве методик оценки разрушения использованы испытания на удар по Шарпи и Изоду, на растяжение образцов с надрезом и испытание на внецентренное растяжение. Пользуясь этими данными, можно получить лишь сравнительные характеристики вязкости. Анализ полученных результатов показал, что характеристики разрушения при низких температурах сплавов на одной и той же основе определяются главным образом пределом текучести, а при сопоставлении сплавов разных систем — кристаллической структурой. С увеличением предела текучести вязкость разрущения обычно понижается вследствие уменьшения доли энергии, приходя-  [c.23]

В настоящей работе описаны результаты исследования нескольких типов сварных соединений сплава на основе никеля марки In onel Х750— одного из основных перспективных материалов для использования в криогенной технике. Исследованы сварные соединения сплава, выполненные дуговой сваркой вольфрамовым электродом в среде защитного газа (ДЭС) и электронно-лучевой сваркой (ЭЛС) в трех состояниях термообработки 1) закалка перед сваркой 2) закалка и двухступенчатое старение перед сваркой 3) закалка и двухступенчатое старение после сварки. Проведены радиографический контроль сварных соединений, металлографический и фрактографический анализы. Механические свойства при растяжении и характеристики разрушения определены на поперечных сварных образцах в интервале от комнатной температуры до 4,2 К.  [c.311]

Свойства упрочняемых з -фазой суперсплавов, таких как Rene 95, весьма чувствительны к скорости охлаждения после растворяющего отжига. Скорость охлаждения определяется закалочной средой и толщиной поперечного сечения материала. В работе [28] показано, что скорость охлаждения оказывает значительное влияние на размер г -выделений и характеристики разрушения при растяжении и ползучести при термообработке дисков из Rene 95 по трем режимам  [c.245]

Увеличение глубины кольцевой трещины сопровождается изменением жесткости напряженного состояния в ее вершине, и это оказывает существенное влияние на характеристики разрушения. Переход от однородного одноосного растяжения к объемному напряженному состоянию при трехосном неоднородном растяжении в зоне трещин приводит к тому, что напряжения в нетто-сечении и о" сначала падают в области малых длин трещин, а затем возрастают с увеличением / (рис. 7.15, 7.16). Их падение соответствует большим, а возрастание — малым й / О. Значения и ст при I = 0 определяются как сопротивление разрыву 3, гладкого образца, а и а — как предел прочности ад. Разница напряжений ст и по брут-то-сечению (см. рис. 7.16) больше при малых длинах трещин и сильнее выражена у пластичных сплавов (Д1, Д16, АК6), что связано с увеличением доли пластических деформаций на конечной стадии разрушения, чем у хрупких (В95пч). С уменьшением диаметра П естественно уменьшается диапазон длин трещин и кривые для напря-  [c.205]

Работа остаточной деформации может быть определена испытаниями на изгиб и на кручение как площадь диаграмм, снятых при изгибе и кручении (рис. 20). Работу разрушения при изгибе А обычно выражают в джоулях. Ислытание на изгиб, при котором напряженное состояние более благоприятно, чем при чистом растяжении, весьма пригодно для оценки высокотвердых, ледебуритных и поэтому хрупких инструментальных сталей и материалов. В специальной литературе часто можно встретить случаи использования значений прочности на изгиб для характеристики вязкости ледебуритных сталей. Для оценки вязкости быстрорежущих сталей часто применяют также испытание на кручение, которое может характеризовать прежде всего ожидаемое поведение спирального сверла. Однако этот метод определения намного сложней и дороже испытания на изгиб и растяжение. Работа разрушения, определяемая разными методами, из-за влияния особенностей распределения напряжений и формы образцов не может быть сопоставлена сами по себе эти способы могут быть использованы для сравнительной оценки сталей, их структуры и вязкости.  [c.38]

Характеристики разрушения при линейном однородном напряженном состоянии. При однократном статическом нагружении в условиях одноосного равномерного напряженного состояния (осевое растяжение-сжатие) в соответствии со схемами рис. 2 и 4 могут иметь место хрупкие (участок ОА), квазихрупкие (участок АС) и вязкие (СК) разрушения, Для оценки предельных состояняа в этом случае используют характеристики  [c.46]

Выше, в 3, 4, показано, что естественное старение после Пластической деформации практически не приводит к изменению формы границ текучести и разрушения. Поэтому влияцие естественного старения на границы текучести и разрушения можно изучать при помощи опытов на простое растяжение. Для этой цели были взяты пять групп гагаринских образцов, изготовленных из отожженной стали 3. Первая группа из трех образцов испытывалась на растяжение до разрушения без промежуточной разгрузки для определения механических характеристик в исходном состоянии (а о=23 кг мм , аьо—40 кг/мм ). Все 24 образца второй груп-  [c.122]

Характеристики разрушения при повторно-статическом двухосном растяжении внутренним давлением сферических сегментов разной кривизны со щелевым надрезом 0,3x10 мм вдоль волокна в полюсе сегмента  [c.40]

Расчеты на прочность деталей мапщн и элементов конструкций при статическом или динамическом нагружении с позиций сопротивления материалов основаны на использовании допускаемых напряжений. Определяются они по механическим характеристикам материалов, полученным при испытании на растяжение до разрушения стандартных гладких образцов с записью диаграммы растяжения ( 1.10).  [c.188]

Испытание на растяжение. Обычно цилиндрической формы образец с утолщениями по концам (для укрепления в захваты испытате.И)Пой машины) растягивается. В современных машинах (Цвик, Инстроп, MTS) скорость растяжения может изменяться в широких пределах от 0,003 до 3000 мм/мип. При больших скоростях деформации такое испытание считается динамическим (ударным). Большинство испытательных машин снабжено диаграммным аппаратом, записывающим кривую деформации (см. рис. 40 и 42), на которой можно найти интересующие величины прочности и иластичности (Ов, <Уа,ъ S, ), хотя деформационные характеристики (б, г )) или характеристики, связанные с малыми деформациями (Е, To.oi и др.), следует определять, измеряя деформацию непосредственно на образце (во время испытания или после его разрушения).  [c.77]


Рассмотрим возможность прогнозирования зависимости S (x) по уравнению (2.22), исходя из следующей процедуры. Коэффициенты с с и Лд в (2.22) будем определять на основании.экспериментальных данных по статическому разрыву одноосных образцов в исходном состоянии (первая серия испытаний), а сравнение аналитической зависимости S (x) проведем с экспериментальными данными, полученными в третьей серии испытаний (циклический наклеп с последующим растяжением в области низких температур). На рис. 2.12 выполнено такое сравнение зависимости 5с(и), рассчитанной по уравнению (2.22) ( i = 2,27. 10- МПа-2 С2 = 4,03- 10 MHa Лд=1,87) с экспериментальными значениями 5с для стали 15Х2НМФА. Условия предварительного циклического деформирования и характеристики последующего хрупкого разрушения образцов приведены в табл. 2.1 и 2.2.  [c.81]

Кроме того, при испытании на растяжение определяют характеристики пластичности. К ним относятся относительное удлинение б Шк — /о)//о 1-100% и относительное сужение яр -= = [ Fg — Ftt)/F I 100 %, где /о и / — длина образца, а и — площадь поперечного сечения образца до и после разрушения соответственно. Отношение изменения длины к начальной длине опре-деляег условное удлинение. Отношение в каждый данный момент изменения длины к длине в этот момент дает истинное удлинение  [c.63]

Определение прочности при растяжении. Прочность — способность материала сопротивляться разрушению под действием внешних сил, постоянных (статическая прочность) и переменных (сопротивление усталости). При статических испытаниях образец (рис. 10.14, а) со стандартными размерами деформируют плавно возрастающей нагрузкой. При испытании измеряют прилагаемую силу F и соответствующее удлинение Д/ образца. По измерениям строят диаграмму растяжения (рис. 10.14,6), которая имеет ряд характерных точек. Если разделить нагрузки, соответствующие характерны.м точкам диаграммы, на площадь поперечного сечения образца до растяжения, то можно определить следующие характеристики прочности предел пропорциональности a =FJAf  [c.128]

Из соотношения ( ) следует, что по мере увеличения скорости давление падает. Оно может стать ниже давления насыщения Ps oo) или даже отрицательным (растягивающие усилия). Если жидкость не подвергалась специальной обработке (например, выдерживанию при высоком, в несколько мегапаскалей, давлении с целью удаления нерастворенных микропузырьков газа), то она не выдерживает растяжения. В итоге в рассматриваемой области жидкость разрывается , в ней возникают пузырьки, содержащие смесь пара и газа (например, воздуха), растворенного в жидкости. Далее эти пузырьки (кавитационные каверны) сносятся потоком в зону повышенных давлений и там охлопываются. Опыты показывают, что при возникновении кавитации характеристики работы насосов, гребных винтов резко ухудшаются. Еще неприятней то обстоятельство, что в зоне кавитации часто наблюдается эрозионное разрушение материала поверхности металла, которое при длительной работе приводит к поломкам и авариям. Кавитация наблюдается также при прохождении через жидкость звуковых и ультразвуковых колебаний значительной интенсивности.  [c.236]

В настоящее время для качественной оценки способности материала тормозить развитие магистральной трещины существует достаточно большой набор экспериментальных методов и соответствующих характеристик материала (точнее, образца из него). Здесь будут рассмотрены несколько таких характеристик, представляющих не только качественный (для сравнения и выбора материалов и технологий), но и расчетный интерес. Последнее означает, что по такой характеристике возможно, на основании соответствующих критериев разрушения, вести расчеты на прочность с определением требуемых коэффициентов запаса. Эти характеристики (называемые характеристиками трещиностой-кости) Z , /fi — критические коэффициенты интенсивности напряжений при плоском напряженном состоянии и объемном растяжении (в случае плоской деформации) бс — критическое раскрытие трещины в вершине (разрушающее смещение) Ло — уиругопластическая вязкость разрушения 1с — предел трещино-стойкости.  [c.129]

Для дальнейшего полезно напомнить оценочные характеристики. Вид излома можно предсказать по отношению длины пластической зоны d перед кромкой треш ипы к толщине h плоского образца или плоского элемента конструкции. По Ирвииу при плоском напряженном состоянии d =Прп излом преимущественно прямой (разрушение происходит путем отрыва), при р > 1 излом преимущественно косой (разрушение происходит путем среза). Введем коэффициент о = KJK, . Если о <2, то в расчет вводится характеристика К,с, если о > 2, то расчет ведется по величине Кс, характерной для данной толщины плоской детали. В нашем случае параметр, р, оценивающий условия разрушения по тину прямого или косого излома, будет для продольного наиравления = 0,8, для поперечного Р = 0,2 (по средгшм значениям Кс). Поскольку это отношение меньше единицы, то разрушение происходит в условиях, близких к плоской деформации при объемном напряженном состоянии (по типу отрыва). В этих условиях конструкция чувствительна к трещинам. Коэффициент ао (показывающий иревышенпе коэффициента интенсивности напряжений при плоском напряженном состоянии над его значением при объемном растяжении) для продольного направления равен 1,33, для поперечного — 1,1. Поскольку о < 2, то расчет следует проводить по предельному коэффициенту а не по Кс.  [c.290]

С увеличением концентрации напряжений более отчетливо проявляется влияние напрягаемых объемов и температуры на переход от вязкого состояния к хрупкому. Поэтому для определения условий перехода от вязкого к квазихрупкому или хрупкому разрушению широко используют температурные зависимости характеристик прочности и пластичности. В качестве примера на рис. 1.10 приведены результаты испытаний для малоуглеродистой стали 22К при растяжении образцов с площадью сечения f=lOOO мм . При испытаниях образцов с острыми надрезами регистрировались разрушающее напряжение Ск, сужение площади поперечного сечения ij) и максимальная деформация бтах в зоне концентрации напряжений после разрушения, измеренной методом сеток с шагом 0,1 мм. Кроме указанных характеристик на диаграмме рис. 1.10 нанесены величина Fb — доля вязкой ягтp и.члома (как хаоареристика степени  [c.17]

Условия распространения трещины эллиптической формы длиной 21 при равномерном растяжении пластинки напряжением а формулируются по А. Гриффитсу. Нестабильное состояние трещины (хрупкое разрушение) возникает при условии равенства изменения энергии напряженного состояния (приходящейся на единицу длины растущей трещины) naH JE изменению энергии на образование свободной поверхности трещины 4/у. При этом величина у является энергией, приходящейся на единицу длины трещины при единичной толщине пластины (т. е. на единицу поверхности), и представляет собой характеристику материала.  [c.23]

Определение характеристик сопротивления квазиста-тическому разрушению осуществляется получением диаграммы разрушения путем растяжения плоских образцов с начальной трещиной и измерения ее приращений с ростом растягивающего усилия вплоть до возникновения неустойчивого состояния трещины при достижении ею критической длины. Измерение длины трещины в процессе испытаний производится датчиками, следящими за ее концом, на основе применения вихревых токов, киносъемки, а также косвенно, путем измерения электросопротивления образца или наклеенных на поверхности образца датчиков последовательного разрыва. Определение критической длины трещины /к в момент перехода к неустойчивому состоянию позволяет получить зависимость между критическими величинами напряжения (1к и длиной трещины /к-  [c.48]


Смотреть страницы где упоминается термин Растяжение Характеристики разрушения : [c.93]    [c.108]    [c.62]    [c.417]    [c.51]   
Механические свойства металлов Издание 3 (1974) -- [ c.2 , c.40 ]



ПОИСК



Диаграмма растяжения образца пластичного материала. Механические характеристики пластичности и кратковременной прочности Разрушение

Разрушение при растяжении

Характеристики разрушения



© 2025 Mash-xxl.info Реклама на сайте