Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рэлея приближение

В условиях предыдущей задачи найти методом Рэлея приближенное значение низшей собственной частоты системы с учетом масс нру/кины и балки т ,, если с = Со = с.  [c.203]

Формулы (5. 3) и (5. 4) являются точными, поскольку в них входят точные значения прогибов Z. и Z. соответствующие s-й форме колебаний. Метод Рэлея приближенного определения квадрата частоты собственных колебаний основан на том, что если в формулу (5. 3) вместо Z. и Z. подставить любую систему значений и прогибов вала, соответствующую  [c.176]


Это решение, так же как и решение Рэлея, приближенно удовлетворяет граничным условиям, так как при г = R  [c.218]

Итак, при приближенном учете массы пружины следует к массе груза добавлять одну треть массы пружины (приближение Рэлея).  [c.300]

Уточненные границы области, полученные из уравнения (7.244), показаны на рис. 7.27 штриховыми линиями. Для второго приближения пересечение границ областей происходит при больших значениях параметра а . В зависимости от конкретного вида коэффициентов п, а/ уравнения (7.235) области неустойчивости могут существенно отличаться по своей форме от областей, полученных для уравнения Матье. Полученные приближенным методом Рэлея области неустойчивости являются приближенными, поэтому интересно выяснить, насколько они точно соответствуют истинным областям при точном решении исходного однородного уравнения (7.235). Метод точного численного определения областей неустойчивости изложен, например, в книге [12].  [c.227]

Метод Рэлея для систем уравнений с периодическими коэффициентами. Если приближенное решение уравнения (7.218) ищется в виде  [c.227]

Рассмотрим в качестве примера параметрических колебаний стержень постоянного сечения, лежащий на упругом основании (рис. 7.29). Стержень нагружен осевой периодической силой. Требуется получить области главного параметрического резонанса методом Рэлея, ограничившись первым приближением (одночленным). Уравнение изгибных параметрических колебаний стержня имеет вид  [c.230]

Решение системы уравнений (9.59) (приближенное) можно получить, воспользовавшись методом Рэлея (см. 7.7), полагая  [c.274]

Определение собственных частот колебаний упругой системы становится чрезвычайно затруднительным тогда, когда число степеней свободы велико и уравнение частот имеет высокий порядок. Уже раскрытие определителя требует большого труда, не говоря о нахождении корней уравнения частот. В то же время для приложений часто бывает достаточно знать наименьшую первую частоту, так называемую частоту основного тона. Ее можно найти с достаточной для практики точностью, пользуясь приближенным методом Рэлея.  [c.184]

Задаваясь совокупностью амплитуд которая, на наш взгляд, близка к первой собственной форме колебаний, мы находим по формуле (6.4.2) приближенное значение квадрата первой собственной частоты, представляющее собою верхнюю оценку. Заметим, что числитель в формуле (6.4.2) представляет собою удвоенную потенциальную энергию системы при перемещениях at, знаменатель же представляет удвоенную кинетическую энергию, вычисленную в предположении, что скорости равны перемещениям. Особенно простым становится применение этой формулы тогда, когда совокупность величин а,- представлена как совокупность перемещений от действующих на систему сил Q,. Тогда потенциальную энергию можно вычислить по теореме Клапейрона. Обозначая перемещение от сил Q, через Vs, перепишем формулу Рэлея следующим образом  [c.185]


Обратимся к примеру 6.2 и вычислим для рассмотренной там системы первую частоту свободных колебаний приближенно, по фо])муле Рэлея. Сначала зададимся формой кривой прогиба, соответствующей одной силе Q, приложенной посередине. При этом  [c.186]

Способ Рэлея, изложенный в применении к системам с конечным числом степеней свободы, находит применение и для приближенного определения частоты основного тона свободных колебаний балки. Пусть у (z) —прогиб балки под действием нагруз-кп q z). Составим выражение  [c.201]

Сложность точного анализа этой задачи вызвала появление различного рода приближенных теорий, которые обычно строятся следующим образом. Делается некоторое кинематическое предположение о характере распределения перемещений, составляется функционал действия по Гамильтону, варьированием этого функционала получается дифференциальное уравнение или система дифференциальных уравнений задачи (идея чрезвычайно близкая к той, которая лежит в основе построения технической теории изгиба балок и пластин). Простейшая теория, которая будет изложена ниже, основывается на уравнении, выведенном еще Рэлеем. Это уравнение содержит предположение элементарной теории о сохранении плоских сечений, но принимает во внимание инерцию поперечного движения элементов стержня. Направим ось Xi по центральной оси стержня произвольного поперечного сечения, тогда оси и Хз будут лежать в плоскости поперечного сечения. Полагая деформацию = независящей от Хг х , найдем вгг = зз = —vmi, i, следовательно, перемещения равны  [c.449]

Так как для прикладных задач главный интерес представляют частоты основных тонов, то для их определения можно пользоваться приближенным методом, например методом Рэлея.  [c.118]

Рэлея. Разложение но степеням и приводит к приближенному равенству  [c.447]

Метод приведения масс. Метод приведения масс состоит в замене системы с некоторым числом степеней свободы (бесконечным или конечным) системой с одной или несколькими (но меньшим по количеству, чем заданная) степенями свободы при соблюдении равенства кинетических энергий заданной и заменяющей ее систем в момент времени, когда отклонения равны нулю, а скорости максимальны. Заметим, что потенциальная энергия деформации в этот момент времени в обеих сопоставляемых системах равна нулю. Метод отличается простотой, однако, в отличие от энергетического метода, нет возможности априорно судить о том, получаются ли искомые частоты с недостатком или с избытком. Все зависит от выбора точек приведения масс. Впервые этот метод был применен Рэлеем, который в заменяющей системе использовал одну массу и требовал, чтобы центр тяжести этой массы совершал такие же колебания (с теми же частотой и амплитудой), как и соответствующая точка заменяемой системы. Разумеется, такое совпадение не означает, что и все остальные точки заменяющей и заменяемой систем колеблются одинаково. В этом и состоит приближенность решения.  [c.241]

К приближенным методам относятся метод, основанный на энергетическом принципе Рэлея, метод последовательных приближений и метод интегральных уравнений. Общее, что имеется в этих методах, заключается в том, что решающий задачу о собственных частотах отказывается от разыскания соотношений между отдельными обобщенными координатами системы и угадывает форму колебаний (форму упругой линии) всей целиком, т. е. угадывает заранее, с точностью до постоянного множителя, сразу все значения обобщенных координат, а затем в процессе решения постепенно уточняет эту форму, приближая ее к теоретически точной.  [c.174]

МЕТОД РЭЛЕЯ И ПОСЛЕДОВАТЕЛЬНЫЕ ПРИБЛИЖЕНИЯ  [c.175]

Формула Граммеля требует выполнения несколько большего объема выкладок, чем формула Рэлея, но зато дает лучшее приближение при одной и той же выбранной функции f (х).  [c.39]

Энергетический метод (метод Рэлея) состоит в приближенном определении квадрата частоты собственных колебаний стержня из энергетических соотношений на основании принимаемой заранее приближенной формы упругой линии стержня. Вычисленное таким об-  [c.400]


В настоящей главе изложено несколько таких методов — метод Рэлея, приближенная формула Донкерли, метод последовательных приближений, метод Ритца и метод С. А. Бернштейна.  [c.334]

В отличие от термометрии по излучению черного тела щумо-вая термометрия всегда имеет дело с низкочастотной частью распределения, заданного уравнением (3.73). Для /lv//г7 формулы Планка, которая описывается приближением Рэлея — Джинса. Даже при Т=1 мК имеем hv/kT 5 10 при =100 кГц. Поэтому уравнение (3.73) можно записать в виде  [c.113]

Получение решения уравнения (5.49) в форме (5.55) сопряжено с большими затруднениями, и полностью задача решена только для прямоугольной свободно опертой пластинки (см. задачу 5.10). Так как для прикладных задач главный интерес представляют частоты основных тонов, то для пх определения можно пользоваться приближенным методом, например, методом Рэлея — Ритца.  [c.180]

Для прямоугольной пластинки (ахЬ), заделанной с четырех сторон (и при других сложных закреплениях), точного решения задачи нет. Приближенное решение можно получить по методу Рэлея— Ритца (5.57) — (5.61), задаваясь одним из выражений  [c.197]

В шестой главе рассматривается нестационарное движение газовых (паровых) пузырьков в жидкости. Наряду с классическими задачами Рэлея о сферически симметричном росте и кавитационном охлопывании газовой полости в жидкости здесь рассматривается задача о росте парового пузырька в однородно перегретой жидкости, ранее в учебную литературу не включавшаяся. При анализе динамики паровых пузырьков на твердой стенке, т.е. при кипении, используются результаты оригинальных работ авторов книги, среди которых, в частности, принципиально важным является рассмотрение задачи об отрыве паровых пузырьков от твердой стенки. В пособии дается строгая постановка задач и излагаются приближенные асимптотические решения для отрыва пузырька в предельных случаях высоких и низких приведенных давлений.  [c.8]

Здесь в уравнении Рэлея — Ламба для приближенного учета диссипации кинетической энергип, связанной не только с вязкостью несущей жидкости .ii, используется эффективная вязкость (см. ниже 6).  [c.105]

Тогда уравнения (13.8.4) линейны и однородны для существования нетривиального решения необходимо, чтобы детерминант системы был равен нулю. Это условие приводит к алгебраическому уравнению степени к относительно Вследствие неравенства Рэлея наименьший корень этого уравнения будет давать верхнюю оценку для которая может только улучшиться с увеличением к. При увеличении к корень уравнения с номером т будет стремиться к величине при этом нельзя сказать сверху или снизу. Доказательство этой теоремы мы не приводим, заметим лишь, что для ее выполнения необходима полнота системы функций fi, т. е. возможность представления любой допустимой системы перемещений Uj в виде (13.3.5). Описанная приближенная процедура определения частот носит название метода Ритца.  [c.438]

Методы Рэлея (1877), см. уравнения (4.57)—(4.61), Ритца (1908) — Тимошенко (1910), Бубнова (1913) — Галеркина (1915) и Треффца (1933) предлагают различные способы приближения w к действительному значению на оснтзе приведенных выше вариационных принципов. По методу В. 3. Власова (1946) —Л. В. Канторовича (1942) решение задается в форме ряда  [c.11]

Из-за трудностей интегрирования уравнения (3.153) приходится прибегать к различным приближенным методам определения частот колебаний, к которым относятся замена кривого стержня (арки) системой с конечным числом степеней свободы, введение конечного числа точечных масс [144] замена арки многоугольной рамой [98], замена арки упруго связанными между собой абсолютно жесткими звеньями [72], применение метода Рэлея —Ритца для интегрирования уравнения колебаний [122] метода Галеркина [69] и т. д.  [c.84]

Критическая частота колебаний определяется при приближенных расчетах по энергетическому методу Рэлея [55], где вывод уравнений для определения частоты собственных колебаний системы основан на следующих предположениях энергия, затраченная на деформацию вала, равна кинетической энергии, возбуждаемой при колебан1ях опоры жесткие, силы трения и сопротивления внешней среды отсутствуют. В этом случае вал можно представить как колеб лющуюся балку, нагруженную несколькими силами Д (рис. VII.6, а), вы-  [c.201]

Построение точных решений дифференциальных уравнений часто оказывается затруднительным, и для решения уравнения (59) применяют приближенные методы, в частности метод Рэлея — Рптца.  [c.321]

Это стационарное (экстремальное) свойство дает хороший способ оценивать частоты собственных колебаний системы, пользуясь приближенными колебаниями принятого типа, в тех случаях, когда точное определение было бы трудным или даже непрактичным. Многие интересные примеры этого метода даны в книге Theory of Sound" Рэлея.  [c.238]

Метод Рэлея—Ритца является универсальным методом приближенного решения основной задачи вариационного исчисления — задачи определения экстремумов или стационарных значений функционалов. Сущность этого метода состоит в замене задачи поиска стационарных значений функционалов принципиально более простой задачей поиска стационарных значений функций нескольких переменных.  [c.64]

Первые три граничных условия являются геометрическими и должны обязательно удовлетворяться при построении приближенного решения задачи методом Рэлея—Ритца.  [c.68]

Следовательно, йц = ац bij = Ьц и результат приближенного решения задачи методом Рэлея—Ритца полностью совпадает с результатом решения методом Галеркина, если в обоих случаях используется один и тот же ряд (2.86), построенный из функций сравнения. Но из сказанного не следует, что эти два приближенных метода полностью идентичны. При решении задачи методом Рэлея—Ритца можно использовать значительно более широкий класс аппроксимирующих функций, чем при решении задачи методом Галеркина в методе Рэлея—Ритца это допустимые функции, а в методе Галеркина—функции сравнения.  [c.76]


Для иллюстрации различия между этими методами рассмотрим следующий пример приближенного решения. Определяя критическую силу шарнирно-опертого стержня по методу Рэлея—Ритца, в первом приближении можно взять аппроксимирующую функцию в виде квадратичной параболы, удовлетворяющей геометрическим граничным условиям задачи  [c.76]

Но если вместо квадратичной параболы, не являющейся функцией сравнения, возьмем четырежды дифференцируемую функцию, удовлетворяющую всем граничным условиям задачи, то результаты приближенных решений метода Рэлея—Ритца и метода Галеркина совпадут. Примем, например,  [c.77]

Теорема о минимуме отношения Рэлея указывает путь приближенного решения задач на собственные значения задаваясь различными функциями сравнения, вид которых подсказывается физическим смыслом задачи, можно получать оценки (сверху) для первых собственных значений. Теорема о минимуме отношения Рэлея справедлива только для самосопряженных и полностью определенных задач на собственные значения, поэтому связанные с ней приближенные методы, строго говоря, применимы только при тех же ограничениях. Все консервативные вадачи теории упругой устойчивости являются самосопряженными, во они не всегда бывают полностью определенными. Последнее обстоятельство иногда следует учитывать при построении приближенных решений.  [c.301]

Линейным моделям первого приближения для голономных динамических систем отвечают потенциальная энергия системы в виде квадратичной формы обобщенных координат с постоянными коэффициентами кинетическая энергия п диссипативная функция Рэлея рассматриваемой системы в виде квадратичных форм обобщенных скоростей с постоянными коэффициентами. Используя это обстоятельство и систематизированный определенным образом выбор обобщенных координат, для линейных и кусочнолинейных моделей несвободных голономных систем можно получить компактный матричный алгоритм формирования инерционной, квазиунругой и диссипативной матриц [25].  [c.171]

Основная идея приближенных методов расчета, основанных на формуле (11.71), заключается в том, что входящей в эту формулу функцией У (л ) задаются исходя из тех или иных качественных соображений этим путем нетрудно получить хорошее приближение, особейно для 1-й собственной частоты, поскольку структура формулы (11.71) такова, что результат вычислений по ней слабо зависит от конкретного вида задаваемой функции, лишь бы она была похожа качественно на истинную форму прогиба при колебаниях и, в частности, удовлетворяла всем геометрическим граничным условиям задачи. При этом имеет место следующая теорема Рэлея  [c.79]

Батанный брус представляет собой балку переменного сечения на двух опорах с двумя консолями, на которых размещены тяжелые челночные коробки. Передача движения батану осуществляется сравнительно нежестким коленчатый валом, податливость которого оказывает влияние на собственную частоту колебаний бруса. Поэтому расчет собственных частот колебаний бруса с учетом всех динамических факторов является сложной задачей, имеющей важное значение для конструкторской практики. Частота собственных Колебаний бруса катана ткацкого станка А7-100 приближенно определялась о помощью метода Рэлея в работе Б. А. Корбута [1]. При этом непосредственно экспериментальная проверка частоты собственных колебаний самого бруса при принятой расчетной схеме не производилась, и вопрос о погрешности определения частот остался невыясненным. Также не определялась форма колебаний.  [c.196]

При стационарном режиме работы термоизоляции X и в (2.56) и (2.57) не будут зависеть от времени t и станут числовыми коэффициентами, которые могут быть определены из системы алгебраических уравнений (в общем случае нелинейных). Эту систему можно получить как из (2.47) при условии = Г = О, так и из условия минимума функционала (2.48). В последнем случае метод приближенного аналитического решения задачи называют методом Рэлея-Ритца [10]. Этот метод применим и в случае конечно-элементной аппроксимации стационарного распределения температур в рассматриваемом неоднородном анизотропном теле произвольной формы.  [c.49]


Смотреть страницы где упоминается термин Рэлея приближение : [c.637]    [c.35]    [c.737]    [c.141]    [c.143]    [c.185]    [c.326]   
Теоретическая механика в примерах и задачах Том 2 Динамика издание восьмое (1991) -- [ c.349 ]



ПОИСК



336 - Метод последовательных приближений 335 - Метод Ритца 336, 337 - Метод Рэлея 337 - Разделение переменных

Борновское приближение (рассеяние Рэлея — Дебая)

Борновское приближение для тел, отличающихся от среды только сжимаемостью. Рассеяние Рэлея Совместный учет изменений сжимаемости и плотности. Формулы Рэлея

Метод Рэлея и последовательные приближения

Расчет отражающих решеток с непрерывным профилем в приближении Рэлея

Рэлей



© 2025 Mash-xxl.info Реклама на сайте