Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несущая способность 199 — Закономерности

Развитие энергетики, авиационной и ракетной техники привело к тому, что раннее разрушение (в некоторых случаях) допускается в условиях эксплуатации конструкционных материалов. В связи с этим, наряду с оценкой чувствительности материалов к трещинам, большое значение начинает приобретать также и теоретический анализ трещин. Наука о прочности материалов и конструкций, которая связана с изучением несущей способности тела, как с учетом начальных трещин, так и без него, а также с изучением различных закономерностей развития трещин, называется механикой разрушения.  [c.117]


Механика разрушения в широком смысле этого понятия включает в себя ту часть науки о прочности материалов и конструкций, которая связана с изучением несущей способности тела как с учетом начальных трещин, так и без него, а также с изучением различных закономерностей развития трещин [43]. Можно выделить следующие математические задачи механики разрушения  [c.325]

В настоящее время значение исследований по механике разрушения выходит далеко за рамки вопроса о несущей способности. Исследование процесса разрушения представляет самостоятельный интерес. Управление процессом разрушения и знание его закономерностей имеют огромное значение для практики. Так, например, для конструкций и сооружений желательно за-  [c.6]

Как известно, водород широко применяется во многих отраслях техники и промышленности. Вместе с тем, обусловленное водородом повреждение металлов считается в настоящее время причиной многих аварий и катастроф, приносящих значительный ущерб. Среди разнообразных проявлений вредного влияния водорода на механические свойства (предел прочности, пластичность, характеристики усталости, ползучести и т. п.) особого внимания заслуживает обусловленное водородом облегчение зарождения и роста трещин в металлах. Связано это с тем, что независимо от того, насколько совершенны технология и качество изготовления, практически все конструкционные материалы и изделия из них содержат дефекты (или врожденные, или возникшие в процессе эксплуатации). При этом водород, воздействующий на металлы, значительно увеличивает их чувствительность к трещинам и увеличивает вероятность разрушения конструкций, обладающих при обычных условиях достаточной несущей способностью. Таким образом, эксплуатация металлов в атмосфере водорода приводит к необходимости оценки их трещиностойкости, а исследование закономерностей роста трещин в таких условиях приобретает большое значение.  [c.325]

Использование принципов синергетики с целью анализа кинетики усталостных трещин и построение единой кинетической кривой подразумевает, как было показано выше, переход к рассмотрению закономерностей эволюции несущей способности элемента конструкции в эксплуатации в процессе подрастания трещины через эволюцию управляющих параметров. Смысл поправочных функций на тот или ипой фактор, влияющий на процесс развития трещины, состоит именно в том, чтобы решать задачу по управлению этим процессом. Через изменение величин параметров воздействия происходит изменение поправочной функции, а через нее оказывается влияние на управляющий параметр. Снижая величину управляющего параметра и не допуская достижения точки бифуркации, можно существенно повлиять на скорость роста усталостной трещины и увеличить длительность эксплуатации с ней элемента конструкции.  [c.401]


Разработку таких методик и проведение исследований целесообразно начать с изучения закономерностей изменения в процессе нестационарного теплового воздействия механических и теплофизических свойств применяемых в конструкции материалов, а не конструктивных элементов. Обобщенные данные о температурной зависимости свойств изучаемых материалов при нестационарных режимах нагрева могут быть непосредственно использованы при расчетах тепловых полей и оценке несущей способности выполненных из них конструктивных элементов, а также полезны для разработки теории моделирования работы реальных конструкций. Кроме того, такие данные необходимы для сравнительной оценки теплостойкости и обоснованного выбора материалов для тех или иных изделий, работающих в сходных с изучаемыми условиях.  [c.174]

Изложенные закономерности сопротивления термоциклическому нагружению относятся к однородным напряженным состояниям растяжения — сжатия или чистого сдвига. Они являются основой для определения малоцикловой несущей способности неоднородно напряженных элементов конструкций. Эта циклическая напряженность находится в упругопластической области, являясь при стационарном внешнем нагружении нестационарной в силу процессов перераспределения деформаций и напряжений при повторном деформировании. Анализ полей деформаций в зонах наибольшей напряженности элементов, особенно в местах концентрации, связан с решением достаточно сложных краевых задач, о чем далее будут изложены некоторые данные. Применительно к задачам концентрации напряжений и деформаций представилось возможным применить решение Нейбера [23], связывающее коэффициенты концентрации напряжений и деформаций Ке, в упругопластической стадии с коэффициентом концентрации напряжений а в упругой стадии. Анализ ряда теоретических, в том числе вычислительных, решений и опытных данных о концентрации деформаций позволил [241 усовершенствовать указанное решение путем введения в правую часть соответствующего выражения функции F (5н, а, тп), отражающей влияние уровня номинальных напряжений Он, отнесенных к пределу текучести, уровня концентрации напряжений а и показателя степени т диаграммы деформирования при степенном упрочнении. Зависимость Нейбера в результате введения этих влияний выражается следующим образом  [c.16]

Для оценки несущей способности элементов конструкций при термоциклическом нагружении на стадии частичного разрушения от образования трещин длительного циклического разрушения необходим анализ закономерностей распространения этих трещин при повышенных температурах. Для температур, при которых еще не проявляются эффекты ползучести и длительного статического повреждения, скорость распространения трещины рассматривается [40] как и при нормальной температуре в степенной зависимости Пэриса от размаха интенсивности напряжений hK  [c.31]

Проблема длительной циклической прочности элементов конструкций связана с исследованием закономерностей деформирования и условий разрушения материалов для случая циклического нагружения при высоких температурах. Наряду с указанным неотъемлемой частью этой проблемы является проверка и уточнение критериев разрушения при неоднородном напряженном состоянии, в особенности в зонах концентрации, и решение краевых задач исходя из уравнений состояния применительно к процессам циклической ползучести. В настоящей работе рассматривается главным образом первая часть этой проблемы, являющаяся основой для разработки вопросов длительной циклической прочности элементов конструкций в целом, и дается приближенная оценка несущей способности при неоднородном напряженном состоянии, позволяющая сделать качественный анализ особенностей этой проблемы.  [c.39]


В итоге приходим к выводу, что в исчерпании несущей способности турбинных лопаток основная роль принадлежит нестационарным режимам, при которых лопатка находится в экстремальных на-прям енных и тепловых состояниях, оказывающих определяющее влияние на процесс разрушения кромок лопаток газовых турбин. Наиболее достоверные сведения об этих процессах могут быть получены при стендовых испытаниях, моделирующих наиболее характерные и напряженные режимы реальной эксплуатации. Большой интерес представляет изучение закономерностей разрушения в зависимости от уровня напряженности, теплового состояния и возможностей суммирования повреждений материала лопаток при испытаниях по этим режимам.  [c.212]

Определение несущей способности элементов машин и конструкций основывается, с одной стороны, на информации о действительной нагружен-ности, распределении внутренних усилий и напряжений и, с другой, на критериях сопротивления разрушению в связи с видом и режимом напряженного состояния, условиями нагрева или охлаждения, а также закономерностями подобия.  [c.41]

В тонкостенной оболочке, ограниченной жесткими фланцами, зоной концентрации напряжений является место сопряжения оболочки с фланцами (рис. 1.3). Проанализируем долговечность элемента на основании деформационно-кинетического критерия прочности. Применение деформационных критериев для оценки несущей способности и прогнозирования ресурса элементов конструкции, работающих nj i периодической нагрузке, основано на анализе кинетики деформированного состояния и закономерностях изменения циклических деформаций и деформаций ползучести в зоне концентрации и в мембранной зоне.  [c.7]

Для анализа закономерностей деформирования и разрушения в вершине трещин существенное значение имеют результаты численного и экспериментального исследований полей деформаций, а также диаграммы разрушения, связывающие действующие нагрузки и длину трещины. При этом диаграммы разрушения рассматривают как основу для определения несущей способности конструкций по степени развития трещин.  [c.21]

Одним из основных при определении несущей способности пространственных конструкций является вопрос о напряженном состоянии и работе сечений в местах образования линий излома и шарниров текучести. В зависимости от принятого в расчете распределения сил в сечении в предельной стадии изменяется расчетная предельная нагрузка. При различных схемах разрушения в предельном состоянии находятся различные сечения конструкций. В одних случаях исчерпывается несущая способность поперечного сечения конструкций в целом, в других — прочность конструкции зависит от несущей способности отдельных ее элементов (полки, ребер, диафрагм и т. д.). По мере исчерпания несущей способности в пространственных конструкциях, как и в плоскостных системах, происходит перераспределение усилий. В большинстве случаев расчет прочности покрытий в виде оболочек тесно связан с выяснением закономерностей перераспределения сил в таких системах.  [c.172]

Известно, что микрогеометрия поверхности деталей оказывает существенное влияние на их выносливость в воздухе чем меньше шероховатость поверхности, тем больше выносливость, однако в коррозионной среде такой закономерности не наблюдается. Часто у деталей, имеющих меньшую шероховатость поверхности, коррозионная выносливость ниже, чем у деталей с более шероховатой поверхностью, но в приповерхностных слоях которых действуют остаточные сжимающие напряжения. Установлено, например, что при одинаковой шероховатости поверхности скоростное точение повышает, а силовое — снижает сопротивление усталости образцов из нормализованной стали 45 и в воздухе, и в коррозионной среде [221 , При силовом точении возникает значительная неоднородность физико-химических свойств поверхностных слоев металла, дефектность структуры и пр что приводит к ухудшению несущей способности деталей при циклическом деформировании.  [c.167]

Сомножители rti, п , отражают возможные отклонения величин усилий, напряжений, характеристик прочности н других величин, от которых зависит несущая способность деталей и конструкций. При установлении приближенных величин запаса прочности для большой совокупности деталей различных конструкций, изготовляемых из различных материалов и работающих в различных условиях эти отклонения характеризуются статистически, подчиняясь вероятностным закономерностям. Величинам общего коэффициента запаса п также свойственно вероятностное распределение как результирующее распределение произведения сомножителей п , п , /ц. Величина п должна быть меньше, чем произведение максимальных значений п ,  [c.537]

Для оценки прочности и несущей способности элементов конструкций и деталей машин при циклических силовых и температурных эксплуатационных нагрузках необходим анализ их напряженных, деформированных и предельных состояний, закономерностей накопления повреждений и разрушения в процессе эксплуатации (см. гл. 1). Предельные состояния по образованию трещин  [c.252]

В монографии обобщены закономерности влияния структуры на модуль упругости и совместного влияния геометрических параметров поверхности на коэффициент жесткости и несущую способность литых деталей. Дан сравнительный анализ существующих способов физико-термического, химического и механического упрочнения поверхности деталей. Приведены методы определения и практического регулирования структуры, физико-химических свойств и остаточных напряжений в поверхностном слое отливок. Рассмотрены процессы заполнения форм жидким металлом, формирование и классификация дефектов поверхности и поверхностного слоя литых и механически обработанных деталей. Описаны особенности технологической оснастки и технологии новых и существующих способов формообразования для получения отливок с упрочняющим геометрическим орнаментом.  [c.2]


Применение рельефного орнаментирования в сочетании с хорошим качеством поверхностного слоя позволяет повышать несущую способность детали, рационально распределять напряжения от рабочих нагрузок, возникающих в ироцессе эксплуатации. При развитии контура поверхности и создании несимметричного сечения, расположенного таким образом, чтобы при изгибе или кручении его части с наибольшим моментом сопротивления подвергались растягивающим напряжениям, улучшаются технологические и конструкционные свойства детали. Эта закономерность описывается уравнением [13, 21]  [c.16]

Одной из задач экспериментальных исследований с моделями АО являлось установление закономерности развития осадки от нагрузки для различных конструкций и армирующих материалов, а также сравнение их несущей способности с неармированным грунтом. Для оценки несущей способности АО был введен коэффициент влияния армирования А арм, равный отношению несущей способности АО к несущей способности неармированного. Для иллюстрации был построен график зависимости коэффициента влияния армирования А арм от показателя текучести грунта, приведенный на рис.1.  [c.6]

Известные в литературе модели хрупкого разрушения тел с трещинами не учитывают изменение реологических свойств материалов в пластически деформируемой зоне у вершины трещины при циклическом нагружении образцов и динамический характер распространения трещины при ее нестабильном развитии и поэтому не позволяют прогнозировать влияние режимов циклического нагружения на характеристики вязкости разрушения и закономерности перехода от усталостного к хрупкому разрушению конструкционных сплавов. Это не позволяет обосновать расчеты предельной несущей способности и долговечности тел с трещинами при циклическом нагружении с учетом стадии их нестабильного развития и ответить на практически важные вопросы в каких случаях циклически нагружаемая конструкция с трещиной разрушится при нагрузках меньших, чем нагрузка, которую она может выдержать при статическом нагружении при каких условиях полное разрушение конструкции произойдет при первом скачке трещины, а при каких — после определенного числа скачков.  [c.210]

В работах [15, 16] приводятся результаты экспериментальной проверки метода приближенного моделирования несущей способности при переменных нагрузках на основе критериев подобия (10.20). Были испытаны на циклический изгиб при вращении образцы восьми серий из стали 45 диаметром 2а = 50 мм с радиусами надрезов р2 = И 9 7,5 5 3,5 2 1 и 0,5 мм, условно принимаемых за натурные детали. В качестве моделей использовались образцы диаметром 2й1 = 7,5 мм с теми же радиусами кольцевых выточек (рис. 10.6), нагружаемые с помощью пульсатора на растяжение-сжатие. При изготовлении модельных и натурных образцов были приняты меры с целью обеспечения тождественности поверхностных слоев в области кольцевых выточек. Во избежание получения случайных результатов при испытаниях единичных образцов, оценка закономерностей усталостного разрушения натуры и моделей производилась путем построения областей рассеивания сопротивлений усталости.  [c.229]

При работе над книгой авторы стремились к анализу результатов теоретических и экспериментальных исследований диссипативных процессов неупругого деформирования и разрушения анизотропных структурно-неоднородных тел. Большое внимание уделено изучению закономерностей закритической стадии деформирования, при реализации которой материал теряет свою несущую способность не сразу, а постепенно, что отражается на диаграмме деформирования в виде ниспадающей ветви.  [c.8]

Интуиция подсказывает нам, что вид нагрузки и ее интенсивность, о которых уже шла речь, а также форма тела в первую очередь оказывают влияние на его прочность и разрушение. Так вот, механика разрушения как раз и является областью знаний о влиянии нагружения, геометрии тела и свойств материала, из которого тело состоит, на его разрушение. Можно сказать, что механика разрушения в широком смысле этого понятия включает в себя ту часть науки о прочности материалов и конструкций, которая связана с изучением несущей способности тела либо без учета, либо с учетом начального распределения трещин, а также с изучением различных закономерностей развития трещин. Этот подход не зачеркнул все прежние достижения науки о прочности,  [c.69]

Сопротивление материалов деформациям и разрушению. Предельные состояния на стадии развития разрушения. Из изложенного следует что определение несущей способности требует решения задач об упруго-пластическом напряженном состоянии и в ряде случаев в температурно-временной постановке. Для этих решений используют зависимости, связывающие напряжения, деформации, время, число циклов, температуру. Поэтому, наряду с обычными условиями пластичности для монотонного или циклического нагружения, применяют уравнения состояния, описывающие процессы циклической пластической деформации, а также деформации ползучести и релаксации. В отдельных случаях эти процессы необходимо рассматривать в неизотермических условиях. Соответствующие феноменологические закономерности вытекают из экспериментальных исследований и гипотез.  [c.8]

В связи с развитием методов и средств обнаружения и измерения возникающих и развивающихся тре-, щин в элементах конструкций представляется целесообразным дать оценку их несущей способности в зависимости от стадии разрушения. Такая оценка должна основываться на закономерностях развития трещин при циклическом нагружении, установленных методами механики разрушения при рассмотрении предельных состояний, соответствующих росту трещин до критических размеров. Запас прочности в этом случае рассматривается в ресурсном смысле, как отношение времени или числа циклов, необходимых для достижения предельного состояния, к времени или числу циклов, нарабатываемому за время службы, т. с. Пх или rij . Закономерности развития трещин при циклическом и длительном статическом нагружении выражаются через значения интенсивности напряжений Ki (см. гл. 5). Последняя зависит от размеров трещин и условий нагружения, а также от параметров уравнений, описывающих механические свойства материала. Эти параметры зависят от температуры и изменения состояния материалов в процессе службы.  [c.8]

Закономерности изменения несущей способности в процессе развития пла-  [c.73]

Установленные закономерности механического поведения неоднородных соединений оболочковых конструкций и предложенные на их основе расчетные методики оценки их несущей способности были получены исходя из предположения, что ослабленный участок соединений (мягкая гтрослойка) окружен твердым металлом с одинаковыми прочностными свойствами, однако на практике, особенно в сварных соединениях конструкций, выполненных из нагартованных термически упрочненных сталей и разнородных материалов, как было показано в разделе 2.1, имеет место несимметричная механическая неоднородность, которую условно можно отнести к схеме, приведенной на рис. 2.6,6 (пози-  [c.164]


Пат ченные расчетные методики, приведенные во 3 главе, учитывающие при оценке несущей способности сферических оболочек ориентацию разупрочненных участков (прослоек), бьши разработаны применительно к классу тонкостенных конструкций. В связи с этим их использование ограничено параметром толстостенности Ч = / / Л 0.1. Однако установленные закономерности по влиянию поперечной жесткости тонкостенных оболочек, ослабленных наклонными мягкими прослойками /2/ на их несущую способность, а так же разработанные в рамках настоящей главы принципы построения и математического описания сеток линий скольжения в толстостенных сферических оболочках позволяет распространить полученные расчетные методики на класс толстостенных оболочек (Ч 0.1).  [c.237]

Для курса сопротивления материалов, отражающего развитие механики деформируемого твердого тела и усовершенствование расчета на прочность современных конструкций, все более актуальным становится освещение вопросов механики разрушения как основы оценки несущей способности по сопротивлению хрупкому и усталостному разрушению. Эти критерии несущей способности в свете закономерностей распространения макроразру-щения входят в тесную связь между собой, существенно углубляя представления о кинетике образования предельных состояний и запаса прочности в процессе исчерпания ресурса при работе изделий.  [c.3]

Три уровня изучения поведения материалов. Для решения инженерных задач надежности необходимо знать закономерности изменения выходных параметров машины и ее элементов во времени. Так, надо оценить деформацию деталей, износ их поверхности, изменение несущей способности из-за релаксации напряжений или процессов усталости, повреждение поверхности из-за коррозии и т. д., т. е. рассмотреть макрокартину явлений, происходящих при эксплуатации машины. Однако для объяснения физической сущности происходящих явлений и для получения таких закономерностей, которые в наиболее общей форме отражают объективную действительность, необходимо также проникнуть в микромир явлений и объяснить первопричины взаимосвязей.  [c.59]

Опыты по изучению закономерностей снижения несущей способности углеметаллопластика в условиях одностороннего нагрева под действием растягивающей нагрузки проводили при одном значении скорости нарастания температуры (6 = 2 град/с), а под действием сжимающих нагрузок — при двух значениях скоростей нагрева (6 = 2 град/с и 6 = Ю град/с).  [c.240]

Результаты исследования закономерностей снижения несущей способности образцов углеметаллопластика в условиях одностороннего нагрева 2П 14  [c.240]

Большой комплекс исследований выполнен проф., докт. техн. наук М. Н. Гапченко по изучению влияния технологических факторов (неоднородности металла, технологических напряжений и дефектов) на свойства сварных соединений. В результате исследований установлены закономерности влияния этих факторов и предложены рекомендации по повышению несущей способности сварных соединений и конструкций, снижению чувствительности сварных конструкций к хрупкому разрушению. Показана возможность регулирования в больших пределах агрегатной прочности и энергоемкости сварных соединений из высокопрочных материалов путем изменения объема мягкой прослойки. Показано, что термическое упрочнение является эффективным средством снижения чувствительности металла шва к концентраторам напряжений. Изучено влияние скорости приложения нагрузки на проч-  [c.24]

Среди различных отраслей строительства мостостроение занимает особое место. При проектировании мостов следует принимать во внимание условия прокладки дорог через природные препятствия, например через овраги и протоки. Кроме того, необходимо учитывать, что каждый мост благодаря своим конкретным функциям, пролету и размерам придает соответствующий облик окружающей местности, городу или природному ландшафту. В ходе выполнения проектирования, выбора систем, воспринимающих нагрузки, и применяемого материала, так же как и дальнейшего подбора поперечных сечений и расчета соединений отдельных элементов с учетом функциональных особенностей и требований экономичности, инженер должен суметь разработать и возвести мостовые конструкции, соответствующие поставленной задаче. Должны быть обеспечены несущая способность и хорошие эксплуатационные качества сооружения. Умение при возведении моста — чисто инженерного сооружения — решать вопросы взаимосоот-ветствия масштаба и формы сооружения с окружающим ландшафтом является показателем мастерства инженера, его высочайшей степени профессионализма. Техническим инструментом при проектировании и возведении мостов являются соответственно применяемые закономерности механики и численно представляемые геометрические зависимости. Значительную роль, однако, при проектировании и конструировании мостов играют опыт и интуиция инженера. Так, в мостах, которые проектировал и строил В.Г. Шухов, можно отчетливо видеть взаимослияние интеллекта и логики с изобретательностью и интуицией инженера .  [c.136]

На технологической линии ПО Уралхиммаш была доказана возможность получения из этих полотнищ многослойных обечаек удовлетворяющих требованиям технических условий на изготовление рулонированных сосудов. Из них было изготовлено и испытано три сосуда диаметром 600 и 800 мм. В результате прочностных исследований установлены следующие закономерности в сосуде, опрессован-ном технологическим давлением, межслойные зазоры одинаковы в обечайках из полотнищ и рулонной стали измерением напряженного состояния сосудов после опрессовки технологическим давлением отмечено отсутствие перегрузки внутреннего слоя по всей длине обечаек из полотнищ обычно характерное для сосудов с короткими рулонированными обечайками испытание сосудов до разрушения подтвердило высокую несущую способность рулонированной конструкции из полотнища, находящейся на уровне значений однослойных сосудов.  [c.60]

Тяжелонагруженные шарнирные соединения. Исследования по применению ИП в тяжелонагруженных шарнирных соединениях выполнены С. И. Дякиным. Разработаны методы оценки несущей способности пластичных смазочных материалов применительно к тя-желонагруженным шарнирным соединениям изучены закономерности, несущая способность, коэффициент трения и износостойкость пар трения при использовании металлоплакирующих смазочных материалов, реализующих ИП исследовано влияние гранулометрического состава присадок на прокачиваемость смазочных материалов установлена периодичность смены смазочного материала в узлах трения. Проведены стендовые испытания новых конструкций тяжелонагруженных шарниров и накоплен большой опыт эксплуатации тяжелонагруженных шарнирных соединений самолетов. В настоящее время в авиационных конструкциях применяют два вида металлоплакирующих смазочных материалов, реализующих ИП, — свинцоль 01 и ВНИИ НП-254. Их триботехнические характеристики в сравнении с ранее применявшимися смазочными материалами (по данным С. И. Дякина) приведены в табл. 18.1.  [c.289]

Десятая глава посвящена проблеме изучения и использования условий устойчивого закритического деформирования материалов в элементах конструкций. Рассмотрены наиболее простые деформируемые тела, допускающие аналитическое решение нелинейной краевой задачи. Полученные решения, иллюстрируя закономерности изучаемого механического явления, являются, кроме того, элементами методического обеспечения некоторых зкспериментальных исследований. Показано, что обеспечение условий равновесного накопления повреждений на закритической стадии деформирования является способом использования резервов несущей способности, которые могут быть весьма значительными, и целью оптимального проектирования конструкций на базе соответствующего развития численных методов решения кргъевых задач механики. Рассмотрен вопрос оценки устойчивости накопления повреждений на закритической стадии деформирования при решении краевых задач методом конечных элементов. Приведены аналитические и численные решения краевых задач, иллюстрирующие процессы развития зон разупрочнения в деформируемых телах. Обсуждается методология прочностного анализа на основе понятия "катастрофичность разрушения .  [c.13]

Учет возможного развития трещин, казалось бы, неимоверно усложняет расчет несущей способности. Теперь уже требуется знать закономерности развития трещин, решать сложную задачу об их иоведении при различных нагрузках они могут расти, а могут и оставаться в равновесном состоянии, не развиваясь. Однако дело обстоит вовсе не так сложно, как кажется поначалу. Решение задач с учетом трещин, зачастую связанное с большими математическими трудностями, содержит гораздо больше информации, чем требуется в этой проблеме. Для того чтобы получить ответ на главный вопрос — обладает ли тело несущей способностью при рассматриваемой нагрузке — совсем не обязательно располагать решением самой задачи о равновесии тела с трещинами. Требуется лишь выяснить, существует ли решение этой задачи при рассматриваемой нагрузке или не существует. А это приводит к проверке некоторых относительно нросгах условий, о чем будет сказано ниже.  [c.69]



Смотреть страницы где упоминается термин Несущая способность 199 — Закономерности : [c.121]    [c.127]    [c.10]    [c.86]    [c.217]    [c.216]    [c.483]    [c.199]    [c.214]    [c.12]    [c.104]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.73 , c.74 ]



ПОИСК



Несущая способность

Несущая способность по перемещениям 71 — Закономерности 74 — Определение

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте