Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроскоп растровый

Оптическая металлография позволяет на ранних стадиях оценить строение металла и определить его структурные составляющие, их качество, морфологию и распределение частиц, дефектность строения и природу ее появления, химическую неоднородность, размеры и ориентацию зерен и т.д., а также выявить участки для дальнейшего более глубокого исследования с привлечением тонких методов, в том числе просвечивающей электронной микроскопии (растровые, эмиссионные, отражательные), стереологии (количественная металлография, рентгеноструктурный анализ, рентгеноспектральный анализ и т.д.). Электронные микроскопы используются для решения метал-  [c.484]


Одним из наиболее распространенных методов диагностики поверхности является растровая электронная микроскопия (РЭМ).  [c.151]

Оптический метод основан на измерении уступа, образованного краем покрытия с основным металлом, способом светового сечения или растровым способом с помощью оптического микроскопа. Метод применим для измерения толщины покрытия от 1 до 40 мкм с коэффициентом отражения не менее 0,3. Уступ получают растворением небольшого участка покрытия с предварительной изоляцией остальной части поверхности.  [c.55]

Микроструктуру покрытия и зоны контакта покрытие—подложка изучали с помощью растрового электронного микроскопа  [c.57]

Исследование покрытий визуальным, люминесцентным и микро-структурным методами не выявило в них дефектов. С помощью растрового электронного микроскопа обнаружены лишь у верхнего края пера небольшие участки поверхности, недостаточно обработанные микрошариками. Испытание образцов-свидетелей показало, что покрытие обладает хорошей адгезией к сплаву. Средний химический состав покрытия соответствовал заданному (мас.%) Со — 63, Сг — 23, А1 - 12.  [c.182]

С помощью растрового микроскопа изучена структура поверхности, легированной хромом и никелем. Дополнительное легирование никелем при оптимальной температуре подложки способствует образованию плотной структуры. При пониженной температуре подложки образуется менее плотная поверхность. Подобный эффект объясняется недостаточной подвижностью атомов вдоль поверхности (поверхностная диффузия) при пониженных температурах, вследствие чего не успевают залечиваться дефекты конденсации.  [c.205]

Растровая (сканирующая) электронная микроскопия широко используется в исследованиях материалов с покрытиями. Современные микроскопы позволяют получать увеличение до 100 000 крат,  [c.179]

Исследование материалов с покрытиями с помощью растровых микроскопов позволяет проводить морфологический анализ изломов деталей с покрытиями оценивать структурную неоднородность в поперечных и продольных сечениях покрытий выявлять микроструктуру переходной зоны покрытие — основной металл определять количественные характеристики пористости покрытия изу-  [c.179]

Выпускается большое количество марок растровых микроскопов, различающихся по назначению, техническим данным, конструктивным решениям.  [c.180]

В сравнении с просвечивающим электронным микроскопом использование растровых приборов дает ряд преимуществ. Во-первых, отпадает нужда в кропотливом и трудоемком изготовлении реплик и фольг, во-вторых, наиболее полно и достоверно фиксируется рельеф поверхности, в-третьих, исследованию доступна значительно большая площадь образца и, наконец, растровый микроскоп позволяет проводить изучения в непрерывном и широком интервале увеличений — от 20 и до 100 000 крат. К недостаткам растрового микроскопа можно отнести более низкую разрешающую способность в сравнении с разрешением, которое возможно на просвечивающем приборе.  [c.180]


Имеется много работ, в которых применение растрового микроскопа позволило получить ценную информацию о структуре покрытий. Изучались шлифы и изломы детонационных покрытий. Показано, в частности, исключительно плотное прилегание первого слоя покрытия (толщиной меньше 15 мкм) к поверхности основного металла [15]. В результате параллельных исследований на сканирующем микроскопе и микрозонде образцов с детонационными слоями и целыми покрытиями из твердых сплавов было отмечено, что в приграничных участках со стороны покрытий образуются зоны тонкодисперсной смеси размером 15 мкм, при напылении формируется поверхностная граница распада со своеобразным анкерным зацеплением [258]. В Институте машиноведения АН СССР проводился фрактографический диализ структуры детонационного покрытия из окиси алюминия на поверхностях косого шлифа и излома [259]. Кинетику развития усталостной трещины в образцах с плазменными покрытиями изучали по снимкам поверхности излома [61].  [c.180]

Следует отметить, что в последние годы в различных лабораториях при анализе материалов с покрытиями все чаще обращаются к растровому микроскопу, Это, вероятно, связано с большой инфор-  [c.180]

Особый интерес с точки зрения механизма формирования сферических частиц представляет анализ их структуры и состава [88-90]. Применение методов микро-рентгено-спектрального анализа на растровом электронном микроскопе показало, что частицы не имеют никаких особенностей по сравнению с основным материалом в виде избытков легирующих элементов. Измерение микротвердости частиц размером около 10 мкм покат зало, что она более чем в 1,5 раза выше, чем у основного материала. Последнее обусловлено процессом обкатки частиц и их упрочнением.  [c.156]

Рис. 3.24. Последовательность (а)—(г) состояний материала в вершине усталостной трещины при монотонном растяжении пластины в колонне растрового электронного микроскопа, и схема (д), (е) образования трещины по одной из полос скольжения в результате вращения объема металла перед вершиной трещины Рис. 3.24. Последовательность (а)—(г) <a href="/info/544247">состояний материала</a> в вершине <a href="/info/34437">усталостной трещины</a> при монотонном <a href="/info/143003">растяжении пластины</a> в колонне <a href="/info/33899">растрового электронного микроскопа</a>, и схема (д), (е) <a href="/info/39537">образования трещины</a> по одной из <a href="/info/7023">полос скольжения</a> в результате вращения объема металла перед <a href="/info/101047">вершиной</a> трещины
Устойчивое формирование усталостных бороздок по всему фронту трещины происходит после достижения шага около 45 нм (4,5-10 м или 0,045 мкм), что характерно для алюминиевых сплавов. В сталях могут быть обнаружены бороздки с шагом около 30 нм, в титановых сплавах устойчивое формирование бороздок имеет место после достижения их шага около 25 нм. Все указанные величины обнаружены с помощью методов высокоразрешающей просвечивающей и растровой электронной микроскопии. Они соответствуют нижней границе размеров мезоскопического масштабного уровня применительно к размерам субструктурных элементов и характеризуют определенный процесс нарушения сплошности материала в цикле приложения нагрузки и с этой точки зрения характеризуются определенным профилем или геометрией усталостной бороздки. Поскольку формирование усталостных бороздок происходит под действием двух полуциклов нагружения-растяжения (восходящая ветвь нагрузки) и снижения нагрузки, то форма профиля усталостной бороздки в значительной степени зависит от того, какой процесс доминирует в каждом из полуциклов [123, 132-134].  [c.164]

При считывании с растрового электронного микроскопа (РЭМ) в ЭВМ строки изображения перпендикулярно гребенчатой структуре излома фиксируется профиль сигнала, имеющего соответствующую периодичность. Предположим, шаг усталостных бороздок однороден в пределах рассматриваемой фасетки излома, его величина меняется пренебрежимо мало и сигнал от рассматриваемой периодической структуры близок к синусоидальному. В этом случае преобразование Фурье от строки изображения с таким сигналом будет умещаться в строку изображения. Если, например, в пределах рассматриваемой фасетки излома получены 20 полных периодов структуры излома, то в спектре Фурье будет присутствовать только двадцатая компонента (гармоника). Таким образом, по преобладающим гармоникам в спектре Фурье можно сделать вывод о преобладающем размере периодических структур на исследуемом участке. Если на изучаемой фасетке излома имеют место две периодические структуры в виде усталостных бороздок с двумя разными величинами, то в спектре Фурье с такой фасетки будут выявлены два пика. Причем важно подчеркнуть, что совершенно не важно, как расположены бороздки одного и того же шага в пределах фасетки излома и как они чередуются сначала могут идти структуры одного размера, потом другого. Шаг бороздок или период регулярной структуры может распределяться в произвольных комбинациях. Таким образом, Фурье-анализ позволяет проводить интегральное метрологическое исследование периодических структур без измерения каждого отдельного шага усталостных бороздок. В такой ситуации в первую очередь исключается субъективное влияние измерителя на получение конечного размера параметра рельефа поверхности, которым в коли-  [c.207]


Микрорельеф излома в зоне усталостной трещины характеризуется площадками сглаженного рельефа, вытянутыми в направлении развития усталостной трещины. Усталостные бороздки в рассматриваемой зоне не были выявлены при разрешающей способности использованного растрового электронного микроскопа лучше 0,009 мкм.  [c.593]

Механико-термнческая обработка (МТО) 284 Микрозонд 40 Микроскоп растровый 41 Микроскоп электронный 38  [c.645]

При изучении излома можно выявить зоны, в которых наиболее неблагоприятно сочетались условия нагружения, что нельзя выявить другими методиками, а также получить сведения о том, как протекал процесс разрушения. Информация, которую можно получить, применив макроанализ, оказывается очень ограниченной. Поэтому в настоящее время для фрактографии используют различные приборы вплоть до электронных микроскопов (растровые электронные микроскопы РЭМН2, РЭМ200 и др.)  [c.140]

Микроскоп растровый электронно-лучевой. Микроскоп применяется в электронных микрозондовых установках для микроскопического анализа различных материалов. Оптическая система (рис. IX. 12) позволяет производить наблюдение и фотографирование образцов, подвергаемых электронной бомбардировке. Исследуемый образец находится в передней фокальной плоскости зеркального объектива, расположенного в вакууме, и изображается последним на бесконечность. С помощью полупрозрачного зеркала 8 световые лучи отклоняются на защитное стекло 12 и затем направляются в тубус микроскопа, где размещена трехкомпонентная дополнительная система 14, 16 и 19. Первые два из этих положительных компонентов образуют телескопическую систему с телецентрическим ходом лучей, непосредственно за которой после отклоняющего зеркала 15 находятся системы 17 и 18 переменного увеличения. Положительный компонент 19 располагается перед тринокуляром 20 (насадка типа МФН-11). Осветительная система выполнена по принципу Кёлера. Электроннолучевая трубка 13 размещена внутри зеркального объектива. Коллектор 2 проектирует источник света I (лампа ОП-12-100) в апертурную диафрагму в масштабе V = —4,4х. Линзы 4, 5 изображают оправу коллектора 2 на полевую диафрагму в масштабе V — —0,5.  [c.385]

Рис. 23. Электронография изломов. Х5000 а, 6 — вязкий (чашечный) излом в, г — хрупкпй (речной) излому а, в — снято в электронном микроскопе а, г — снято на растровом микроскопе Рис. 23. <a href="/info/330155">Электронография</a> изломов. Х5000 а, 6 — вязкий (чашечный) излом в, г — хрупкпй (речной) излому а, в — снято в <a href="/info/1617">электронном микроскопе</a> а, г — снято на растровом микроскопе
Сказанное подтверждается электроннофрактографическими исследованиями реплик (рис. 23,а, в) или непосредственно с поверхности (рис. 23,6, г). Первое проводят на одном электронном микроскопе, а второе на сканирующем (растровом) электронном микроскопе.  [c.41]

Отметим, что для исследованных образцов из стали 15Х2МФА для реализации указанных условий образцы необходимо было деформировать в области пластической неустойчивости (после образования шейки). После деформирования из образцов изготавливали продольные шлифы, которые затем травили и просматривали на растровом электронном микроскопе. На рис. 2.17, а представлена микротрещина, обнаруженная в образце, продеформированном до о = 1766 МПа, а на  [c.88]

В связи с этггм получили п )именепие растровые электрон и ы е микроскопы, в которых изображение создается благодаря вторичной эмиссии электронов, излучаемых поверхностью, на которую падает HenpepbiBH(j перемещающийся по этой поверхности поток первичных электронов.  [c.13]

Принцип действия интерферометров основан на использовании явле+1ия интерференции света, отраженного от образцовой и исследуемой поверхностей. Форма образующихся интерференционных полос зависит от вида и высоты (до 1 мкм) неровностей контролируемой поверхности. Принцип действия растровых микроскопов основан на явлении образования муаровых полос при наложении ]130бражений элементов двух периодических структур (направленных следов обработки и д.чфракцнонной решетки). При наличии неровностей муаровые полосы искривляются. Высоту микронеровностей определяют по степени искривления муаровых полсс.  [c.201]

С использованием методов растровой электронной микроскопии, метода скользящего пучка рентгеновских лучей и измерения микротвердости исследованы процессы самоорганизации дислокационной и субаереиной структуры в приповерхностных слоях и внутренних объемах технически чистого рекристаллизованного Мо при статическом растяжении и влияние магнетроиного покрытия Мо-45, 8Re-0,017 на особенности протекания этих процессов вблизи поверхности. Исследования проводили на образцах, растянутых до деформаций, соответствующих пределу пропорциональности, нижнему пределу текучести н пределу прочности.  [c.185]

Приведены новейшие данные по оптической, световой, электронной, просвечивающей, растровой, дифракционной, фотоэмиссиоиной и автоионной микроскопии. Описан метод дифрактометрии в медленных электронах и при использовании электронов с высокими энергиями. Рассмотрен микроанализ с помощью электронного зонда, Оже-спектроскопии и др. Изложены сведения о сварных соединениях. С позиций металлографии классифицированы различные способы сварки, исследованы основные изменения структуры прн сварке с растрескиванием в твердом состоянии, прослежено влияние температурного поля на структурные изменения при различных способах сварки.  [c.28]


Для измерения неровностей поверхности до 40 мкм разработан растровый-микроскоп ОРИМ-1. Принцип его действия заключается в образовании муаровых полос при взаимном смещении или развороте двух растров, например, в виде решеток. Оптическая схема прибора аналогична схеме двойного микроскопа. При этом вместо щели на поверхность изделия проектируется изображение растра, наблюдаемое с помощью второй ветви оптической системы микроскопа.  [c.73]

Изучением строения изломов и интерпретацией содержащейся в них информации занимается фрактография. Ценность фрактографии как источника информации о механизмах разрущения усиливается тем, что она позволяет однозначно определить источник разрушения. Разработка новых методов изучения поверхности твердых тел каждый раз способствовала развитию фрактографии. Бурный рост фрактогра-фических исследований связан с развитием растровой электронной микроскопии, которая сочетает уникальные возможности одновременного изучения морфологических особенностей рельефа поверхности трещины с разрешением порядка 1,5—2,0 нм, а также химического и кристаллографического микроанализа с разрешением порядка 1 мкм.  [c.187]

При систематическом исследовании с помощью растрового электронного микроскопа изломов материалов на основе переходных ОЦК-металлов, подвергнутых испытанию на одноосное растяжение в щи-роком интервале температур испытания и претерпевших хрупко-пластичный переход [951, установлено, что все кажущееся многообразие видов поверхностей разрушения может быть описано как результат действия весьма ограниченного числа механизмов разрушения, модифицированных влиянием структуры материала и температурно-скоростных условий нагружения. Следует выделить следующие механизмы разрущения скол, слияние пор, хрупкое межзеренное (межъячеистое) разрушение.  [c.187]

Механические свойства основного металла, определенные после нанесения ионно-плазменного покрытия из нитрида титана отличаются незначительно, независимо от времени нагрева при напылении (сГ(, 2 = 1150 МПа Ов = 1400 МПа б = 5,5% ф = 36%). Структура стали У8 — отпущенный сорбит. Металлографические исследования показали, что даже на нетравленных шлифах граница между покрытием и основой проявляется сравнительно четко, покрытие копирует рельеф металла. На участках, нормальных к направлению движения напыляемых частиц, толщина покрытия больше, чем на остальных. Поверхность покрытия неровная, наблюдаются впадины и бугры. Дно крупных впадин, имеющих форму усеченного конуса, обычно опцавлено, края гладкие. Аналогичные образования были обнаружены при исследовании поверхности покрытия на растровом микроскопе [246]. Полагают, что в данном случае имеет место химическое взаимодействие материалов покрытия и основы. Результаты определения трещиностойкости приведены в табл. 8.1.  [c.152]

Приготовление образцов с покрытиями для просмотра в растровом микроскопе обычно не вызывает затруднений и может проводиться в соответствии с рекомендациями по подготовке металлических образцов [256]. Особое внимание следует обратить на предотвращение изменений рельефа (отслоение и выкрашивание покрытий) при механической подготовке объектов исследования. При изучении неэлектропроводных покрытий для отекания заряда, возникшего на поверхности при сканировании электронного пучка, на образец наносится проводящая пленка углерода или металла. В качестве объекта изучения могут применяться сравнительно крупные образцы —. до 70X20 мм в сечении (размеры должны соответствовать объекто-держателю).  [c.180]

Медленное деформирование материала может приводить к росту трещины не только по плоскостям скольжения, но также и по границам фрагментов Б условиях интенсивного наклепа материала и к потере когезивной прочности в субграницах. Такой вид разрушения сосуда под давлением был зарегистрирован в условиях эксплуатации. Трещина распространялась в сплаве 17Х4НЛ по границе раздела двухфазовой структуры между прослойками феррита (ферритная полосчатость) и мартенситной матрицей, В условиях двухосного растяжения под давлением и длительной выдержки под нагрузкой происходило вязкое отслаивание феррита по приграничным зонам. Трехточечный изгиб образцов в виде пластин, вырезанных из гидроагрегата вдоль образующей его цилиндрической части, показал, что при скорости деформации 0,1 мм/мин образцы имеют высокую пластичность с остаточной деформацией около 8 % в зоне разрушения. Рельеф излома имел полное подобие рельефу эксплуатационного излома. Это означало, что в условиях эксплуатации вязкость разрушения была реализована полностью, хотя на мезоскопическом масштабном уровне (0,1-10 мкм) разрушение было квазихрупким. Пластическая деформация материала была реализована за счет деформации зерен феррита с формированием неглубоких ямок в момент отслаивания феррита по границам мартенситных игл, что привело к столь значительному утонению стенок ямок, что их можно было выявить только при увеличении около 10,000 крат при разрешении растрового электронного микроскопа около 10 нм.  [c.92]

Детальное изучение состава частиц было проведено на Оже-спектрометре LAS-2000 (фирма Рибер , Франция) с коаксиальной электронной нушкой и анализатором электронов тина цилиндрическое зеркало с разрешением доли энергии спектра AWf/ Wf < 0,3 % при остаточном давлении (1,3-2,6) 10 МПа. Ток пучка электронов составлял около 5-10 А, энергия первичного пучка 3 кэВ, диаметр — несколько микрометров. Режим работы во вторичных электронах позволял в режиме работы типа растрового электронного микроскопа выбрать для исследования участок поверхности размером в несколько квадратных микрометров.  [c.157]


Смотреть страницы где упоминается термин Микроскоп растровый : [c.409]    [c.103]    [c.199]    [c.151]    [c.169]    [c.152]    [c.153]    [c.76]    [c.157]    [c.179]    [c.208]    [c.65]    [c.127]    [c.159]    [c.215]    [c.336]   
Металловедение (1978) -- [ c.41 ]



ПОИСК



Бланк Н. Б., Фомичева Н. А., Калинин В. М. Исследование структуры армированных полимерных материалов методом растровой электронной микроскопии

Метод просвечивающей растровой электронной микроскопии

Микроскоп

Микроскоп растровый электронный — Характеристики

Микроскоп электронный растровый

Микроскоп электронный растровый глубина фокуса

Микроскоп электронный растровый классификация

Микроскоп электронный растровый разрешение

Микроскоп электронный растровый электронные пушки

Микроскоп электронный растровый электронные пушки, характеристики

Микроскопия

Микроскопия микроскопы

Микроскопия электронная растровая

Микроскопия электронная растровая изучение структуры

Микроскопия электронная растровая локальный анализ

Микроскопия электронная растровая перспективы развития

Растровая микроскопия. Рентгеноструктурный анализ

Растровый рентгеновский микроскоп (микрозонд)

Электронный микроскоп, калибровка увеличения растровый



© 2025 Mash-xxl.info Реклама на сайте