Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лучевая

КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ СВАРНЫХ СОЕДИНЕНИЙ ПРИ ПЛАЗМЕННОЙ, ЭЛЕКТРОННО-ЛУЧЕВОЙ, ЛАЗЕРНОЙ СВАРКЕ  [c.16]

Электронно-лучевую сварку в вакуумных камерах применяют в основном для относительно некрупных изделий из тугоплавких и активных металлов титана, циркония, тантала, молибдена и т. д.  [c.16]

УСТАНОВКИ ДЛЯ ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКИ  [c.157]

Таблица 35. Характеристики некоторых отечественных электронно-лучевых сварочных установок Таблица 35. Характеристики некоторых отечественных электронно-лучевых сварочных установок

В современных ЭЦВМ выходное устройство имеет Дисплей -устройство, в котором на экране электронно-лучевой трубки ЭЦВМ быстро (электронным пером ) отражает выходную информацию в виде цифр, букв, целых фраз рисует векторы, графики, чертежи.  [c.292]

В электронно-лучевой трубке Дисплея-кинескопе имеются две системы управления электронным лучом I-система управления интенсивностью луча, а следовательно, и яркостью светящейся на экране точки 2-система управления перемещением луча в пространстве (рис. 485).  [c.292]

При косоугольном проецировании лучевые плоскости взаимно параллельны. Параллельными прямыми линиями являются и носители.  [c.97]

Б промышленности применяют различные способы сварки газовую — Г, под флюсом — Ф, в защитных газах — 3, электрошлаковую — Ш, ультразвуковую — Уз, плазменную — Пз, электронно-лучевую — Эл, лазерную — Лз и т. д.  [c.194]

ЭЛЕКТРОННО-ЛУЧЕВАЯ СВАРКА  [c.202]

Электронно-лучевой сваркой изготовляют детали из тугоплавких химически активных металлов и их сплавов (вольфрамовых, танталовых, ниобиевых, циркониевых, молибденовых и т. п.), а также из алюминиевых и титановых сплавов и высоколегированных сталей. Металлы и сплавы можно сваривать в однородных и разнородных сочетаниях, со значительной разностью толщин, температур плавления и других теплофизических свойств. Минимальная толщина свариваемых заготовок составляет 0,02 мм, максимальная — до 100 мм.  [c.204]

Электронно-лучевой сваркой можно соединять малогабаритные изделия, применяемые в электронике и приборостроении, и крупногабаритные изделия длиной и диаметром несколько метров.  [c.204]

Для сварки титана и его сплавов также применяют плазменную и электронно-лучевую сварку.  [c.237]

Проведение этих мероприятий во многом зависит от габаритных размеров и конструктивного оформления сварных заготовок. Для сложных заготовок с элементами больших толщин и размеров при наличии криволинейных швов в различных пространственных положе-йиях можно применять только хорошо свариваемые металлы. Последние сваривают универсальными видами сварки, например ручной дуговой покрытыми электродами или полуавтоматической в защитных газах в широком диапазоне режимов. При сварке не нужны, например, подогрев, затрудненный вследствие больших толщин и размеров элементов, а также высокотемпературная термическая обработка, часто невозможная ввиду отсутствия печей и закалочных ванн соответствующего размера. Для простых малогабаритных узлов возможно применение металлов с пониженной свариваемостью, поскольку при их изготовлении используют самые оптимальные с точки зрения свариваемости виды сварки, например электронно-лучевую или диффузионную в вакууме. При этом легко осуществить все необходимые технологические мероприятия и требуемую термическую или механическую обработку после сварки.  [c.246]


Одна из главных задач машиностроения — дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей. Особенно большое внимание уделяется чистовым и отделочным технологическим методам обработки, объем которых в общей трудоемкости обработки деталей постоянно возрастает. Наряду с механической обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергий. Весьма прогрессивны комбинированные методы обработки (рис. 6.1).  [c.253]

Полное удаление указанных пороков возможно только при обработке электроискровым, лучевым, ультразвуковым и некоторыми другими методами.  [c.380]

ЛУЧЕВЫЕ МЕТОДЫ ОБРАБОТКИ  [c.412]

В качестве источника теплоты при электрической сварке плавлением можно использовать различные источники — электрическую дугу (электродуговая сварка), теплоту шлаковой ванны (электрошлаковая сварка), теплоту струи ионизированных газов холодной пла. злгы (плазменная сварка), теплоту, выделяемую в изделии в результате преобразования кинетической энергии электронов (электронно-лучевая сварка), теплоту когерентного светового луча лазера (лазерная сварка) и некоторые другие.  [c.4]

Основной способ сварки плавлением — электродуговая сварка — имеет много разновидностей, связанных со степенью механизации, — ручная, полуавтоматическая, автоматическая, с применением различных защитных веществ — толстого покрытия на электродах (при ручной сварке), флюсов, защитных газов или порониговой проволоки при механизированной сварке, контролируемой атмосферы (защитных газов или вакуума) при некоторых способах дуговой и электронно-лучевой сварки. Сварка плавлением применяется для весьма широкого круга цветных металлов и сплавов, а также неметаллов — стекла, керамики, графита.  [c.5]

Малое количество вводимой теплоты. Как правило, для получения равной глубины нроплавления при электронно-лучевой сварке требуется вводить теплоты в 4—5 раз меньше, чем при дуговой. В результате резко снин аются коробления изделия.  [c.67]

Недостатки электронно-лучевой сварки возможность образования песплавлений и полостей в корне шва на металлах с большой теплопроводностью и швах с большим отношением глубины к ширине для создания вакуума в рабочей камере после загрузки изделий требуется длительное время.  [c.69]

Значительно более жесткие требования по точности выполнения устанавливаемых режимов предъявляются к манипуляторам и механизмам перемещения сварочного источника теплоты в автоматизированных установках. Допустимы следуюн(ие колебания скорости перемещения при сварке под флюсом 5% при аргонодуговой сварке тонколистовых металлов 2% в установках для электронно-лучевой и лазерной сварки менее ztl%. Точность установки свариваемых изделий и отклонение положения стыка при сварке не должно нревын1ать 20—25% поперечного размера площади пятна ввода теплоты в изделие, т. е. при сварке под флюсом это составляет J —2 мм при микроплазмен-ной — не более 0,25 мм нри электронно-лучевой и лазерной (в зависимости от диаметра луча) от tO,l мм до 10 мкм.  [c.123]

Рис. 84. Блок-схема аитаыия установки для электронно-лучевой сварки Рис. 84. <a href="/info/65409">Блок-схема</a> аитаыия установки для электронно-лучевой сварки
Для г])уипы тугоплавких, химически активных металлов при-годнь[е методы сварки резко ограничены необходимостью очень тщательной защити зоны сварки от вредного действия окружающего воздуха. В этом случае применяют дуговую сварку в инертных газах с дополнительной защитой зоны сварки с помощью развитой системы пасадок, укрепляемых па горелке, и защитой обратной стороны Н1ва, либо используют камеры с контролируемой атмосфо])ой. Достаточно эффективна электронно-лучевая сварка в вакууме.  [c.341]


Имеются указания па режимы электронно-лучевой сварки трубок из циркопия толщиной 0,3 и 0,5 мм, которые тщательно собирают (зазор не более 0,1—0,2 мм) сила тока луча / 4-ь12 мА t/y K =19- 20 иВ V = 21 м/ч.  [c.373]

В Советском Союзе разработаны и внедрены новые методы сварки, например, диффузионная, открьшающая широкие возможности для автоматизации процессов, сварки деталей из разнородных материалов, упрочнения силовых конструкций, и ряд других (термитная, лазерная, взрывом, трением, плазменная, электронно-лучевая, индукционная, газопрессовая, холодная, ультразвуковая, электрошлаковая, сварка по флюсу, под флюсом и др.).  [c.256]

Электронно-лучевая трубка устроена следующим образом. Изображение (информация), выдаваемое ЭЦВМ, воспроизводится на экране, покрытом с внутренней стороны материалом, в котором под воздействием электронов возникает свечение (флюоресценция), образующее черные и белые элементы изображения. Электроны эмми-тируются (выбрасываются) из накаленного катода трубки и фокусируются электрическими или магнитными полями в острый электронный луч, который и заставляет светиться ту или другую точку экрана (на рис. 485 точка изображена красным цветом).  [c.292]

Графические устройства, связанные с ЭВМ, в настоящее время разрабатываются в таких направлениях 1) электромеханические устройства или графопостроители, которые бывают двух типов — планшетные или рулонные 2) дисплеи на основе электронно-лучевых трубок (ЭЛТ), в которых графическая инфор1 1ация выводится на экран трубки. Эти устройства, как правило, снабжаются так называемым световым пером , позволяющим проектировщику выполнять различные графические операции непосредственно на экране. Создаются также автоматические и полуавтоматические устройства ввода графической информации, при этом информация может содержаться на различных носителях (бумаге, пленке и т. д.). В каждом из устройств есть фотоэлектрический узел, где происходит формирование электрических сигналов, зависящих от интенсивности лучей отражающихся от носителя.  [c.27]

Развитие машиностроения и приборостроения предъявляет возрастающие требования к качеству металла его прочности, пластичности, газосодержанию. Улучшить эти показатели можно уменьшением в металле вредных примесей, газов, неметаллических включений. Для повышения качества металла "спользуют обработку металла синтетическим шлаком, вакуумную дегазацию металла, плавку в вакуумных печах, электрошлаковый переплав (ЭШП), вакуумно-дуговой переплав (ВДП), вакуумно-индукционный переплав (ВИП), переплав металла в глектронно-лучевых и плазменных печах.  [c.45]

К термическому классу относятся виды сварки, осуществляемые илавлеиием с использованием тепловой энергии (дуговая, плазменная, электрошлаковая, электронно-лучевая, лазерная, газовая и др.).  [c.182]

Рис. 5,15. Схема устаноБКи для электронно-лучевой сварки Рис. 5,15. Схема устаноБКи для электронно-лучевой сварки
В установках для электромно-лучевой сварки электроны эмит-тируются на катоде / электронной пушки формируются в пучок электродо.м 2, расположенным неносредственно за катодом ускоряются под действием разности потенциалов между катодом и анодом 3, составляющей 20—150 кВ и выше, затем фокусируются в виде луча и направляются специальной отклоняющей магнитной системой 5 па обрабатываемое изделие в. На формирующий электрод 2 подается отрицательный или нулевой по отношению к катоду потенциал. Фокусировкой достигается высокая удельная мощность (до 5-10 кВт/м и выше). Ток электронного луча невелик (от нескольких миллиампер до единиц ампер).  [c.203]

В машиностроении часто возникают технологические проблемы, связанные с обработкой материалов и деталей, форму и состояние поверхностного слоя которых трудно получить механическими методами. К таким проблемам относится обработка весьма прочных, очень вязких, хрупких и неметаллических материалов, тонкостенных нежестких деталей, пазов и отверстий, имеющих размеры в несколько микрометров, поверхностей деталей с малой шероховатостью или малой толщиной дефектного поверхностного слоя. Подобные проблемы решаются применением электрофизических и электрохимических (ЭФЭХ) методов обработки, условная классификация которых дана на рис. 6.1. Для осуществления размерной обработки заготовок ЭФЭХ методами используют электрическую, химическую, звуковую, световую, лучевую и другие виды энергии.  [c.400]


Смотреть страницы где упоминается термин Лучевая : [c.67]    [c.68]    [c.68]    [c.83]    [c.124]    [c.157]    [c.161]    [c.164]    [c.371]    [c.373]    [c.373]    [c.373]    [c.375]    [c.97]    [c.28]    [c.47]    [c.203]    [c.237]    [c.254]   
Начертательная геометрия (1987) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте