Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микротрещины

Исследование механических свойств сталей показало, что их пластические и вязкие свойства, а отсюда и возможность упрочнения зависят от чистоты стали, содержания примесей внедрения (азот, кислород, водород) и неметаллических включений. Примеси внедрения, т. е. элементы, образующие с железом твердые растворы внедрения, создавая местные искажения, затрудняют движение дислокаций. Пластическая деформация при этом затруднена, и в местах скопления неподвижных дислокаций облегчается зарождение микротрещин.  [c.396]


Упругопластическое деформирование металла приводит к возникновению в поверхностном слое заготовки остаточных напряжений, растяжения или сжатия. Напряжения растяжения снижают сопротивление усталости металла заготовки, так как приводят к по явлению микротрещин в поверхностном слое, развитие которых ускоряется действием корродирующей среды. Напряжения сжатия, напротив, повышают сопротивление усталости деталей. Неравномерная релаксация остаточных напряжений искажает геометрическую форму обработанных поверхностей, снижает точность их взаимного расположения и размеров. Релаксация напряжений, продолжающаяся в процессе эксплуатации машин, снижает их качество и надежность.  [c.268]

Условно поверхностный слой обработанной заготовки можно разделить на три зоны (рис. 6.12, б) / — зона разрушенной структуры с измельченными зернами, резкими искажениями кристаллической решетки и большим количеством микротрещин ее следует обязательно удалять при каждой последующей обработке поверхности заготовки // — зона наклепанного металла III —основной металл, В зависимости от физико-механических свойств металла обрабатываемой заготовки и режима резания глубина наклепанного слоя составляет несколько миллиметров при черновой обработке и сотые и тысячные доли миллиметра при чистовой обработке. Пластичные металлы подвергаются большему упрочнению, чем твердые.  [c.268]

Высокочастотный электроискровой метод применяют при обработке деталей из твердых сплавов, так как он исключает структурные изменения и образование микротрещин в поверхностном слое материала обрабатываемой заготовки.  [c.404]

Благодаря обкатке упрочняются галтели, в опасном сечении уменьшается концентрация напряжений и развальцовываются поверхностные микротрещины, возникающие при обработке резанием.  [c.386]

При анализе зарождения разрушения по изложенной выше схеме обычно делается одно существенное допущение — независимость НДС от повреждения материала. Только при малом относительном объеме повреждений указанное допущение справедливо. При усталостном и хрупком разрушениях повреждение характеризуется весьма острыми микротрещинами, объединение которых (зарождение макроразрушения) происходит при относительно небольшой доле поврежденного материала. Поэтому при усталостном и хрупком разрушениях анализ НДС и накопления повреждений можно проводить независимо. Вязкое, особенно межзеренное, кавитационное разрушение обусловлено объединением большого количества растущих в процессе деформирования пор. Очевидно, что в данном случае объем повреждений может достигать значительной величины и разрыхление материала будет оказывать влияние на НДС. Следовательно, анализ вязкого разрушения материала требуется проводить посредством решения связной задачи о НДС и накоплении повреждений в элементе конструкции, что отмечено пунктирной стрелкой на рис. В.1 между блоком НДС и блоком Анализ зарождения макроразрушения .  [c.7]


Кроме феноменологических подходов к проблеме хрупкого разрушения в настоящее время интенсивно развиваются исследования по анализу предельного состояния кристаллических твердых тел на основе физических механизмов образования, роста и объединения микротрещин. Разработаны дислокационные модели зарождения и подрастания микротрещины [4, 24, 25,. 106, 199, 230, 247], накоплен значительный материал по изучению закономерностей образования и роста микротрещин в различных структурах [8, 22, 31, ИЗ, 183, 213, 359, 375, 381], подробно изучены макроскопические характеристики разрушения, в том числе зависимости истинного разрушающего напряжения от разных факторов, таких, как диаметр зерна, температура и т. д. [6, 101, 107—109, 121, 149—151, 170, 191, 199, 222, 387, 390, 410, 429]. Как отмечалось выше, при формулировке критериев разрушения наиболее целесообразным представляется подход, интерпретирующий механические макроскопические характеристики исходя из структурных процессов, контролирующих разрушение в тех или иных условиях.  [c.59]

Использование критерия хрупкого разрушения в виде (2.1) во многих случаях позволяет прогнозировать несущую способность различных конструкционных элементов в частности, результаты расчета по условию (2.1) весьма удовлетворительно соответствуют экспериментальным данным при испытании образцов с концентраторами [101] в случае реализации довольно больших пластических деформаций по достижении условия oi = = S (ef), где ef — интенсивность пластической деформации. Однако применение критерия хрупкого разрушения в виде (2.1) для прогнозирования условий разрушения образцов с острыми концентраторами или трещинами связано со значительными трудностями. В частности, моделирование температурной зависимости критического коэффициента интенсивности напряжений Ki T) на основе условия (2.1), как будет показано в подразделе 4.2, не позволяет адекватно описать экспериментальную кривую. Указанные обстоятельства приводят к необходимости дополнительного анализа условий хрупкого разрушения. Такой анализ на основе физических процессов, контролирующих хрупкое разрушение материала, представленный ниже, позволил дать новую формулировку необходимого условия хрупкого разрушения— условия зарождения микротрещин скола — и предложить физическую интерпретацию зависимости критического напряжения хрупкого разрушения S от пластической деформации [75, 81, 82, 127, 131].  [c.60]

Отметим, что при построении различных моделей разрушения и формулировке критериев хрупкого разрушения во многих случаях исходят в общем из априорного постулирования преобладающего значения того или иного процесса. Так, например, в работах [149, 150] предполагалось, что критическое напряжение хрупкого разрушения 5с в поликристаллических материалах с различной структурой при разных температурно-деформационных условиях нагружения определяется только одним условием — переходом зародышевых микротрещин к гриффитсов-скому (нестабильному) росту. Условия распространения микротрещины как через границы зерен, так и через любые другие барьеры, возникающие при эволюции структуры в результате пластического течения, игнорировались. При этом сделана попытка объяснить увеличение S с ростом пластической деформации гР уменьшением длины зарождающихся в процессе деформирования микротрещин за счет уменьшения эффективного диаметра зерна [149, 150]. Такая модель не позволила авторам удовлетворительно описать зависимость S eP), что привело их к выводу о существенном влиянии деформационной субструктуры на исследуемые параметры. Следует отметить, что, рассматривая в качестве контролирующего разрушения только процесс страгивания микротрещины и не учитывая условия ее распространения, практически невозможно предложить разумную концепцию влияния пластической деформации на критическое напряжение S .  [c.61]

При деформировании в области температур Т> То (рис. 2.6) для микротрещины длиной Р возможны следующие ситуации сли а С So, то условие страгивания не выполнено и микротрещина не может упруго расти, но может удлиняться пластически , например с помощью эмиссии дислокаций из ее вер-  [c.63]


Таким образом, при температуре Т > Tq условия зарождения, страгивания и распространения микротрещины скола в принципе уже не совпадают. Микротрещины длиной Р при сг 5о, нестабильно распространяясь до некоторых эффективных барьеров, роль которых выполняют либо микронапряжения (напряжения II рода), либо границы субструктуры, приводят к макроразрушению, если напряжение о достигло уровня Ор, соответствующего прорыву этих барьеров (рис. 2.6, а, точка  [c.64]

В противном случае (5о о < Ор) микротрещины останавливаются такими препятствиями и в результате пластической деформации затупляются (рис. 2.6, а, точки 2 и 3). В качестве примера на рис. 2.6 показано торможение микротрещин границами субструктурных составляющих.  [c.64]

Изложенные здесь представления о кинетике хрупкого разрушения ОЦК металлов опираются на несколько существенных моментов. Во-первых, введено понятие зародышевой микротрещины скола ( острой микротрещины), которая имеет раскрытие, равное параметру решетки, и длина которой определяется значением напряжения страгивания So по условию Гриффитса. В соответствии с (2.2) для перлитных сталей 0,4 мкм.  [c.64]

Хрупкое разрушение поликристаллических ОЦК металлов при любых напряженных состояниях реализуется при выполнении трех условий зарождения, страгивания и распространения микротрещин скола в достаточно представительном объеме материала, обычно большем, чем размер зерна [121].  [c.67]

В качестве критерия зарождения микротрещин обычно принимают условие [101, 150, 170]  [c.67]

Такая формулировка связана со следующими обстоятельствами. Известные дислокационные модели зарождения микротрещин [4, 25, 170, 247] показывают, что они возникают при некотором критическом значении локальных напряжений в голове дислокационного скопления. Это соответствует критическому значению эффективного напряжения = Эффективное напряжение здесь определяется равенством a ff = ai — оо, в котором величина Оо есть так называемое напряжение трения, являющееся суммой напряжений Пайерлса—Набарро и сопротивления скольжению, обусловленного взаимодействием дислокаций с примесными атомами, точечными дефектами и исходными дислокациями [170]. Иными словами, оо есть напряжение, соответствующее началу пластического течения в зерне. С другой стороны, как известно, при температуре нулевой пластичности Т = = Tq условие наступления пластического течения (2.3) есть одновременно и условие разрушения сг/ = От(7 о) [170, 222]. Очевидно, что в данном случае выполнено условие зарождения микротрещины, и, следовательно, справедливо равенство  [c.67]

Таким образом, из приведенных рассуждений следует, что факт зарождения какой-либо несплошности (например, при а, = От) вовсе не гарантирует дальнейшего ее развития по хрупкому механизму. Для возможной реализации хрупкого разрушения необходим такой механизм зарождения микротрещины, который делает ее устойчивой к эмиссии дислокаций из ее вершины. Ясно, что реализация такого механизма в общем случае может происходить при условиях, отличных от условия (2.3).  [c.69]

Итак, перейдем к формулировке условия зарождения таких острых микротрещин.  [c.69]

К настоящему времени предложено значительное число различных механизмов образования микротрещин [4, 24, 25, 106,  [c.69]

Методы обработки основаны на использовании пластических свойств металлов, т. е. способности металлических заготовок принимать остаточные деформации без нарушения целостности металла. Отделочная обработка методами пластического деформирования сопровождается упрочнением поверхностного слоя, что очень важно для повышения надежности работы деталей. Детали станонится менее чувствительными к усталостному разрушению, новьипаются их коррозионная стойкость и износостойкость сопряжений, удаляются риски и микротрещины, оставшиеся от предшествующей обработки, В ходе обработки шаровидная форма кристаллов поверхности металла может измениться, кристаллы сплющиваются в направлении деформации, образуется упорядоченная структура волокнистого характера. Поверхность заготовки принимает требуемые форму и размеры в результате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается постоянным.  [c.385]

При подаче напряжения на электроды начинается процесс растворения материала заготовки-анода. Растворение происходит главным образом на выступах микроиеровностей поверхности вследствие более высокой плотности тока на их вершинах. Кроме того, впадины между микровыступамн заполняются продуктами растворения оксидами или солями, имеющими пониженную проводимость. В результате избирательного растворения, т. е. большей скорости растворения выступов, микронеровности сглаживаются и обрабатываемая поверхность приобретает металлический блеск. Электрополирование улучшает электрофизические характеристики деталей, так как уменьшается глубина микротрещин, поверхностный слой обрабатываемых поверхностей не деформируется, исключаются упрочнение и термические изменения структуры, повышается коррозионная стойкость.  [c.406]

Экспериментально установлено, что при качении со скольжением, например сО Г,>г),г,. сл . рис. 8.8, а), цилиндры / и 2 обладают различным сопры 1 Г лс1 ем устэлости. Это объяснястся следующим. Усталостные микротрещины при скольжении располагаются не радиально, а вытягиваются в иаправлении сил трения. При этом в зоне контакта масло выдавливается из трещин опережающего цилиндра 1 и запрессовывается в треш.ипы отстающего цилиндра 2. Поэтому отстающий цилиндр обладает меньшим сопротивлением усталости. Ускорение развития трещин при работе в масле не означает, что без масла разрушение рабочих поверхностей замедлено. Во-первых, масло образует на поверхности защитные пленки, которые частично или полностью устраняют непосредственный металлический контакт и уменьшают трение. При контакте через масляную пленку контактные напряжения уменьшаются, срок службы до зарождения трещин увеличивается. Во-вторых, при работе без масла увеличивается 1 итенсивность абразивного износа, который становится главным критерием работоспособности и существенно сокращает срок слу кбы.  [c.104]


Поломка зубьев (рис. 8.11). Поломка связана с напряжениями изгиба. На практике наблюдается выламывание углов зубьев вследствие концентрации нагрузки. Различают два вида поломки зубьев поломка от больших перегрузок ударного или даже статического действия (предупреждают защитой привода от перегрузок или учетом перегрузок при расчете) усталостная поломка, происходящая от действия переменных напряжений в течение сравнительно длительного срока службы (предупреждают определением размеров из расчета на усталость). Особое значение имеют меры по устранению концентраторов напряжений (рисок от обработки, раковин и трещин в отливках, микротрещин от термообработки и т. п.). Общие меры предупреждения поломки зубьев — увеличение модуля, положительное смещение при нарезании зубьев, термообработка, наклеп, уменьшение концентрации нагрузки по краям (жесткие валы, зубья со срезанными углами — см. рис. 8.13, ж, бочкообразные зубья — см. рис. 8.14, в и пр.).  [c.105]

Рис. 2.6. Схема взаимодействия микротрещины с изменяющейся в процессе деформирования структурой (а), а также температурные зависимости критического разрушающего напряжения Of, предела текучести От в случае совпадения (а) и несовпадения (б) минимального значения разрушающего напряжения 0mln С От Рис. 2.6. Схема взаимодействия микротрещины с изменяющейся в <a href="/info/184594">процессе деформирования</a> структурой (а), а также <a href="/info/191882">температурные зависимости</a> критического разрушающего напряжения Of, <a href="/info/1680">предела текучести</a> От в случае совпадения (а) и несовпадения (б) минимального значения разрушающего напряжения 0mln С От
Например, в модели Стро [170, 247] Omin определяли из условия зарождения микротрещины, при этом предполагали, что страгивание микротрещины выполняется автоматически после ее зарождения. В модели Коттрелла [170, 247] рассмотрена обратная ситуация, предполагается, что Omin определяется напряжением страгивания So микротрещины критической длины,, а собственно само зарождение микротрещины может происходить при сколь угодно малых эффективных напряжениях. Сопоставление полученных таким путем расчетных значений ашш с экспериментальными данными по хрупкому разрушению поликристаллов продемонстрировало весьма удовлетворительное их соответствие [121, 170]. Следовательно, можно считать, что-при Т = То помимо условий зарождения и страгивания микро-  [c.62]

Длину острой (раскрытие равно параметру рещетки) зародышевой микротрещины 1°, приводящей при Т —То раз-рущению, можно определить из соотношения Гриффитса  [c.63]

Анализ известных дислокационных механизмов образования микротрещин [4, 25, 170, 247] показывает, что существует некоторая минимальная величина устойчивой зародышевой трещины Imin. Очевидно, что зарождение микротрещины большей, чем Imin, длины мало вероятно, так как в этом случае требуемый уровень нагруженности материала будет превышать нагружен-ность, необходимую для зарождения трещины минимальной длины. Иными словами, микротрещина длиной 1тш зародится на более ранних этапах нагружения, чем будут реализованы условия зарождения микротрещины большего размера.  [c.63]

Таким образом, при зарождении микротрещины по какому-либо конкретному дислокационному механизму ее длина 1° не будет зависеть от нагруженности материала и температуры и будет равна Imin- В случае зарождения микротрещин на включениях различной природы ее размер Р будет определяться размером этих включений и, следовательно, также слабо будет зависеть от температурно-силовых условий нагружения образца.  [c.63]

Таким образом, можно считать, что при различных условиях деформирования материала микротрещины, способные инициировать хрупкое разрушение, будут зарождаться с постоянной длиной Р, которую можно вычислить по формуле (2.2). Следовательно, So(7 o) = onst, т. е. So — температурно-независимая характеристика, отвечающая критическому напряжению страгивания микротрещины.  [c.63]

Очевидно, что наблюдение острой зародышевой трещины в статических условиях в принципе невозможно. В соответствии с предлагаемой моделью могут наблюдаться микронесплошно-сти размером, близким к / , но имеющие порообразный впд в результате пластического притупления вершин тех зародышевых микротрещин, для которых условие страгивания было не выполнено, т. е. которые возникли при о С 5о. Действительно,  [c.64]

Рис. 2.7. Схематическое изображение условий зарождения (/), страгивания (2) и распространения (5) микротрещин скола для случая одноосного растяжения при совпадении (а) и несовпадении (б) минимального значения разрушающего напряжения Tmin с пределом текучести, а также температурные зависимости предела текучести a и критической деформации 8 Рис. 2.7. <a href="/info/286611">Схематическое изображение</a> условий зарождения (/), страгивания (2) и распространения (5) микротрещин скола для случая <a href="/info/25667">одноосного растяжения</a> при совпадении (а) и несовпадении (б) минимального значения разрушающего напряжения Tmin с <a href="/info/1680">пределом текучести</a>, а также <a href="/info/493219">температурные зависимости предела текучести</a> a и критической деформации 8
Указанное следствие вытекает из второго важного момента предложенной схематизации процесса хрупкого разрушения условия зарождения, страгивания и распространения трещин скола являются независимыми. Разрушение в макрообъеме в зависимости от температурно-деформационных условий нагружения может контролироваться одним из перечисленных процессов. Для случая одноосного растяжения условия зарождения, страгивания и распространения микротрещин скола можно изобразить в виде схемы (рис. 2.7), использовав параметрическое представление в координатах а — Т. Кривая 1 соответствует условию зарождения микротрещин скола, причем это условие не совпадает с условием достижения макроскопического предела текучести. Прямая 2, отвечающая напряжению а=5о, есть условие страгивания. Линия 3 определяет условия распространения микротрещин скола в изменяющейся в процессе деформирования структуре материала. Очевидно, что при условии о От параметр ap = onst, поскольку в этом случае rie сформированы  [c.65]

Для обоснования условия зарождения микротрещин скола на пределе текучести обычно используют факт наличия микротрещин и микронесплошностей на самых ранних стадиях пластической деформации. В то же время анализ экспериментальных результатов, представленных схематически на рис. 2.6,6, а также проведенные нами исследования [2, 131] (см. также подраздел 2.1.4) показали, что зарождение микротрещин скола, приводящих к хрупкому разрушению, может происходить при напряжениях, существенно превышающих предел текучести. Для того чтобы разрешить это противоречие, ответим на вопрос условие зарождения каких микротрещин должно входить в критерий хрупкого разрушения Как уже обсуждалось, микротрещи-  [c.67]

Предположим, что в первом варианте микротрещина зародилась в плоскости скольжения (например, по механизму Гилмана—Рожанского [25, 247]) и ориентирована параллельно сдвиговым напряжениям, т. е. подвергается только П моде деформирования. В этом случае распределение напряжений у ее вершины согласно работе [199] таково, что т (/Ос(= 1,03, где т г и Ос1 — сдвиговое и растягивающее напряжения у вершины трещины, действующие в плоскостях скольжения и спайности соответственно (Tsi = Tre e=o Ос( = (fee 10 450 где г, 6 — полярные координаты, отсчитываемые от вершины микротрещины). Поскольку в данной ситуации для ОЦК металлов Тзг/сГсг Тт.п/сГт.п = = 0,24 0,28 (тт. п и От.п — теоретическая прочность на сдвиг и на отрыв соответственно), зародившаяся микротрещина не является устойчивой к сдвиговым процессам в ее вершине [230]. С возникновением микротрещины начинается эмиссия дислокации из ее вершины и, следовательно, рост такой микротрещины в процессе деформирования будет пластический, стабильный, контролируемый деформацией. Таким образом, зародышевая микротрещина, ориентированная параллельно сдвиговым напряжениям, растет по пластическому механизму и, следовательно, притупляется, становясь трещиной, не способной инициировать хрупкое разрушение.  [c.68]


Предположим, что во втором варианте микротрещина зародилась в плоскости спайности (например, по механизму Стро [247]) и ориентирована перпендикулярно нормальным напряжениям, т. е. подвергается только I моде деформирования. В данном случае п/От. п ( Сзг = Тг е д 45о сгсг = сге0 е о  [c.68]


Смотреть страницы где упоминается термин Микротрещины : [c.345]    [c.9]    [c.104]    [c.10]    [c.59]    [c.60]    [c.60]    [c.60]    [c.61]    [c.62]    [c.63]    [c.64]    [c.65]    [c.66]    [c.68]    [c.69]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.238 , c.253 , c.256 , c.275 , c.355 , c.364 , c.574 ]

Композиционные материалы с металлической матрицей Т4 (1978) -- [ c.73 ]

Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.473 ]

Количественная фрактография (1988) -- [ c.0 ]



ПОИСК



Алгоритмизация процессов отслоения разрушившихся волокон от матрицы и процессов развития микротрещин в матрице

Влохвитц X., Мекке К. Устойчивые полосы скольжения как ранняя стадия образования усталостных микротрещин в ГЦК металлах

Лукаш П., Кунц Л. Модель критических микротрещин на пределе усталости и ее следствия для расчетов циклической прочности

Механизмы и критерий образования дислокационных микротрещин

Микротрещина поверхностная

Микротрещины в сварных соединениях

Микротрещины вторичные

Микротрещины докритические

Микротрещины медленный рост

Микротрещины поперечные

Микротрещины хромового покрыти

СВАРОЧНЫЕ Микротрещины

Смыкание микротрещин

Установка для выявления микротрещин и раковин в стальных

Установка для выявления микротрещин и раковин в стальных деталях



© 2025 Mash-xxl.info Реклама на сайте