Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение этой же задачи при помощи определяющей функции

Допустим, что в некоторой сплошной среде, описываемой определенной реологической моделью, распространяется математический разрез с заданным законом Движения его конца l = i t) 0. Чему равна величина удельных энергозатрат Yo = Yo(0 в этом случае На этот вопрос можно ответить при помощи (5.1) и (5.6) для расчета достаточно одного главного члена асимптотического разложения решения вблизи края разреза. Вид этого члена обычно можно найти заранее, не решая задачи в целом, методом сингулярных решений (гл. III) он определяется с точностью до нескольких произвольных констант или произвольных функций (последнее имеет место, например, для некоторых уравнений гиперболического типа). Эти константы (или функции) могут быть найдены только из решения задачи в целом. Предположим, что первый член асимптотического разложения известен, и будем стягивать контур С в точку О. Как следует из (5.6), форма контура С несущественна, поэтому ее можно выбирать произвольно, руководствуясь соображениями удобства.  [c.223]


Метод конформных преобразований основан на отображении плоскости ху в плоскость ии с помощью аналитических функций, рещении задачи в этой плоскости (нахождении потенциала как функции координат ы и и), что преобразует сложную задачу в другую, с более простыми граничными условиями, и последующем обратном преобразовании решения в плоскость ху. Обычный подход заключается в исследовании различных преобразований и последующем поиске задач, которые могут быть решены с помощью этих преобразований. Таким образом, функция f w)= nw решает задачу о нахождении потенциала бесконечной заряженной нити, /(ш) = 1/ш позволяет найти поле двух параллельных заряженных нитей, с противоположными зарядами /(ш)=г / , определить поле заряженного прямого угла и т. п. Это не очень эффективный путь, в особенности если вспомнить, что он применим только к планарным полям. Тем не менее этот метод оказался весьма полезным при конструировании мультиполей, ограниченных прямыми линиями [79]. Метод, используемый для решения задач этого типа, называется преобразованием Шварца — Кристофеля.  [c.112]

Идея о нахождении фундаментальной функции, из которой при помощи дифференцирования и конечных преобразований без всякого интегрирования могли бы быть получены все решения уравнений движения, принадлежит Гамильтону. Он первый доказал существование такой функции в геометрической оптике, назвав ее там характеристической функцией эта функция оказалась необычайно полезной в целом ряде задач. Позднее, в своих исследованиях по динамике, Гамильтон снова столкнулся с той же самой функцией, назвав ее на этот раз главной функцией . Ввиду общей вариационной основы у оптики и механики, эти две концепции эквивалентны и открытие Гамильтона относится по существу к вариационному исчислению, а специальная форма вариационного интеграла несущественна. (Этот интеграл определяет время в оптическом принципе Ферма и действие в механическом принципе Лагранжа.)  [c.257]

Расчет на вынужденные колебания сводится к решению неоднородных дифференциальных уравнений, описывающих упругую систему станка и процесс резания, в которых заданы возмущения со стороны переменного припуска, элементов привода, фундамента и других источников возмущений. Можно эту задачу решать методом передаточных функций и затем, посредством пересчета и соответствующих преобразований, определять амплитуду колебаний между режущим инструментом и заготовкой при резании. Этот способ полезен, если передаточные функции упругой системы станка не меняются, а условия резания и величины возмущений либо переменны, либо еще не известны в момент расчета. С помощью расчетной схемы и матриц коэффициентов уравнений, приведенных выше, можно решать конструкторские и технологические задачи, рассчитывать нормы на неуравновешенность и колебания двигателя и основных валов привода, исходя. из допустимого уровня колебаний холостого хода, подбирать параметры системы виброизоляции и т. п. Некоторым неудобством  [c.185]


При исследовании задач, относящихся к колебаниям, обычно в первую очередь определяется вид нормальных функций, т. е. функций, представляющих нормальные типы колебаний, а затем исследуются интегральные формулы, при помощи которых частные решения могут быть скомбинированы так, чтобы они удовлетворяли произвольным начальным условиям. Я выбрал другой путь, предпочтительный с точки зрения выявления общности метода, который не зависит от знания нормальных функций. Осуществляя этот план, я перейду теперь к исследованию связи между произвольными постоянными и начальными условиями и приведу решение одной или двух задач, аналогичных задачам, рассмотренным в главе о струнах.  [c.290]

Ряд результатов, связанных с исследованием энергетического спектра электронов в металлах и в полупроводниках (в частности, с исследованием плазменной ветви спектра), был получен в последние годы с помощью так называемого метода дополнительных переменных [10] — [17]. Однако, в отличие от случая статистики Бозе [18], в применении к ферми-системам этот метод встречается с известными — именно для него специфическими — трудностями. Во-первых, дополнительное условие, появляющееся в связи с введением лишних переменных, осложняет исследование кинетических процессов с участием плазменных квантов. Во-вторых, связь бозе- и ферми-возбуждений, предполагаемая малой в работах [12] и [16], [17], фактически, по-видимому, таковой не является. Наконец, в третьих, логически не вполне удовлетворительным представляется искусственное введение предельного импульса плазменного кванта Ограничение возможных значений волнового вектора плазмона должно было бы не навязываться, а получаться само собой. В следующих параграфах мы увидим, что при решении задачи методом функций Грина естественные границы плазменного спектра действительно определяются из самой теории.  [c.160]

При изучении вопроса о концентрации напряжений около щелей и трещин значительный интерес представляет решение смешанных задач теории упругости для неклассических областей типа полосы (слоя). В математическом отношении эти задачи очень трудны. Однако начатое около десяти лет назад систематическое исследование этого вопроса привело к созданию эффективных методов решения задач такого класса (В. М. Александров, И. И. Ворович, Н. Н. Лебедев, Я. С. Уфлянд и др.). Методами операционного исчисления эти задачи довольно легко сводятся к решению интегральных уравнений первого рода с нерегулярным ядром. Наибольший эффект в нахождении удобных для практического использования решений этих уравнений был достигнут при использовании специфичных асимптотических методов. Начало исследований вопроса равновесия трещин в полосе было положено И. А. Маркузоном (1963). В. М. Александров (1965) исследовал равновесные трещины вдоль полосы или слоя, где интегральное уравнение строится для функции, определяющей форму трещины. Им получено приближенное решение путем разложения ядра уравнения в ряд при больших отношениях толщины к размеру трещины и получены зависимости нагрузки от размеров трещины. Используя этот метод и решения уравнений Винера — Хопфа, В. М. Александров и Б. И. Сметанин (1965, 1966) получили выражение для коэффициента интенсивности напряжений на краях равновесной трещины в слое малой толщины. Для случая постоянной нагрузки определяется связь размера равновесной трещины с действующей нагрузкой. Аналогичное решение получено для дискообразной трещины в слое конечной толщины. В. М. Ентов и Р. Л. Салганик (1965) рассмотрели в балочном приближении задачу Ь полубесконечной трещине, проходящей по средней линии полосы, причем для нагрузок, приложенных к берегам трещины, задача сводится к рассмотрению расслаивания под действием нормальной или тангенциальной силы. В этой работе с помощью метода Винера — Хопфа получено выражение для коэффициента интенсивности напряжений для достаточно больших и достаточно малых значений отношения расстояния от конца трещины до точки приложения силы к полуширине полосы. Используя аналитический метод, развитый В. М. Александровым и И. И. Воровичем (1960) при исследовании контактных задач для слоя большой относительной толщины, Б. И. Сметанин (1968) рассмотрел задачу о продольной щели в клине, а также плоскую и осесимметричную задачи о продольной щели в слое при различных условиях на гранях клина и слоя. Для щели, расположенной симметрично относительно граней клина (слоя), и нормальной нагрузки, приложенной к поверхности щели, получены формулы для определения поверхности щели. Коэффициент интенсивности напряжений выражается в виде асимптотического ряда по степеням безразмерного параметра.  [c.383]


Используемые в пакете ШРАСТ структуры данных и командный язык предоставляют квалифицированному специалисту по управлению очень широкие возможности, которые он может адаптировать в дальнейшем для решения конкретных задач. С другой стороны, для начинающего пользователя применение всех возможностей пакета, скорее всего, окажется слишком сложным. Во многих пакетах эта проблема решается с помощью интерактивной программы HELP. Однако хотя такая помощь очень удобна для пользователя, имеющего общее представление о пакете и желающего получить информацию о конкретном предмете, при начальном знакомстве с пакетом этот метод оказывается неприемлемым. Безусловно, в пакете ШРАСТ предусмотрена соответствующая программа и, кроме того, имеется возможность постепенно знакомить пользователя с особенностями пакета. Для этого служит инструкция, в которой содержатся только простейшие языковые элементы, позволяющие задавать переменные и вызывать стандартные функции. Более того, если даже эта процедура окажется слишком сложной для начинающего пользователя, незнакомого с основными положениями теории управления, он может использовать метод запросов (режим справочника). При этом режиме инициатива переходит от пользователя к системе. С помощью направляющего диалога система самостоятельно определяет правильную последовательность действий.  [c.146]

Подстановка этих рядов в граничные условия даёт последовательность рекуррентных соотношений, из которых определяются коэффициенты и а . Особенно просто решается задача в тех случаях, когда отображающая функция ш(С) есть полином. В этом случае система совместных уравнений, которую приходится решать, оказывается конечной. Важность этого случая для практических приложений заключается в том, что заданную область 6 можно апроксимировать с произвольной точностью областью S , отображаемой на круг при помощи полинома достаточно высокой степени п. На этом может быть построен метод приближённого решения задачи. Ограничившись здесь только этими общими замечаниями, мы займёмся изложением другого метода решения поставленных краевых задач, именно сведением их к некоторым функциональным уравнениям. Этот приём основан на приложении интегралов типа Коши.  [c.229]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]

Задача этого и следующего параграфов - переход от дифференциальньгх уравнений для поля деформаций й (дг) (или для любого другого поля) к интегральным уравнениям технически очень проста. Она решается с помощью выбора соответствующей функции Грина. К сожалению, этот выбор неоднозначен, и для решения этой проблемы в научной литературе привлекаются дополнительные и очень глубокие физические принципы (принцип причинности [27], принцип предельного поглощения [28], условия излучения Зоммерфельда [29] в теории дифракции, правила обхода Ландау [30] в теории бесстолкновительной плазмы, условия временного сглаживания волновой функции Геллманна-Гольдбергера в квантовой теории рассеяния [31], граничные условия Боголюбова [32] в кинетической теории газов). Мы покажем, что без всего этого можно обойтись, поскольку однозначный выбор функции Грина определяется заданным направлением времени, непрерывностью спектра возбуждений бесконечной среды, гладкостью корреляционных функций случайных неоднородностей и условием ослабления корреляций [33].  [c.57]



Смотреть страницы где упоминается термин Решение этой же задачи при помощи определяющей функции : [c.252]    [c.91]    [c.305]    [c.24]    [c.434]    [c.165]   
Смотреть главы в:

Методы небесной механики  -> Решение этой же задачи при помощи определяющей функции



ПОИСК



1.125, 126 — Определяемые

Решение задач с помощью ЭВМ

Решение с помощью ЭВМ



© 2025 Mash-xxl.info Реклама на сайте