Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные дифференциальные уравнения движения твердого тела

Кулон предполагал, что при малых скоростях второй член играет решающую роль, а при больших скоростях — наоборот, им можно пренебречь. Кулон проделал большое количество опытов по изучению крутильных колебаний дисков в жидкости. Он установил отличие трения в жидкости от трения твердых тел, а также указал метод для определения той величины, которую Стокс, Максвелл, Мейер и др. называли внутренним трением. Опыты Кулона дали возможность Стоксу обосновать основные дифференциальные уравнения движения вязкой жидкости (1850 г.).  [c.8]


Л. Эйлер первый дал ясное определение понятия движения жидкости и, пользуясь им, в 1755 г, вывел основные дифференциальные уравнения движения некоторой воображаемой жидкости, лишенной трения, так называемой идеальной жидкости. Эти уравнения впоследствии были названы его именем. Эйлер раскрыл природу взаимодействия твердого тела с натекающей на него жидкостью — изменяя направление движения, жидкость обтекает твердое тело вдоль его поверхности, оказывая давление лишь в точках соприкосновения с этим телом. На основе исследований Л. Эйлера возникла родственная гидравлике наука — гидромеханика (механика жидкостей), изучающая законы движения жидкостей методами математического анализа. Этими методами можно получать решения, допустив, что жидкость лишена вязкости.  [c.7]

По дифференциальным уравнениям поступательного движения можно решать два основных типа задач на поступательное движение твердого тела  [c.209]

Дифференциальное уравнение вращательного движения твердого тела в общем случае позволяет решать две основные задачи по заданному вращению тела определять вращающий момент внешних сил и по заданному вращательному моменту и начальным условиям находить вращение тела. При решении второй задачи для нахождения угла поворота как функции времени приходится интегрировать дифференциальное уравнение вращательного движения. Методы его интегрирования полностью аналогичны выше рассмотренным методам интегрирования дифференциального уравнения прямолинейного движения точки.  [c.304]

Запишите дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси сравните его с основными уравнениями динамики материальной точки.  [c.208]

На заре развития дифференциального и интегрального исчисления Эйлер первым оценил величайшее могущество нового математического метода для задач теоретической механики. Теория обыкновенных дифференциальных уравнений есть вполне адекватный аппарат для познания сущности большого класса механических движений. Именно поэтому Эйлеру в своих работах удалось раздвинуть границы механики до пределов, о которых в те годы ученые даже и не мечтали. Достоинства аналитического метода изложения были подтверждены Эйлером рядом крупнейших оригинальных научных открытий разработкой теории несвободного движения точки, созданием теории движения твердого тела, созданием основных методов изучения гидромеханики идеальной жидкости, точными расчетами баллистических траекторий в сопротивляющейся среде. Многие научные результаты Эйлера вошли в современные курсы теоретической механики. Стихийная творческая сила этого ученого, его одержимость научными изысканиями, его напряженный, не прекращающийся до последнего дня жизни труд являются непревзойденными во всей истории науки. Эйлер написал более 750 научных работ.  [c.31]


При описании движения твердого тела используются различные системы переменных. Каждая система имеет свои преимущества и недостатки для каждой конкретной задачи. Так для поиска первых интегралов, исследования некоторых вопросов устойчивости и топологического анализа наиболее удобными являются такие переменные, в которых уравнения полиномиальны (или даже однородны). Для численного интегрирования, кроме простой системы дифференциальных уравнений желательно иметь наименьший порядок системы. Для качественного изучения, применения методов теории возмущений и нелинейной нормализации необходимы системы канонических переменных, наиболее отражающие специфику невозмущенной задачи. Здесь мы приводим основные наборы переменных, используемые в динамике твердого тела. На практике, особенно в приложениях к гироскопической технике, также используются различные комбинации и модификации этих систем, обладающих более специальными свойствами.  [c.39]

Основные результаты этого исследования, теоремы завихренности Гельмгольца, сегодня хорошо известны, и их можно найти в большинстве учебников. Для усвоения же этого материала вряд ли нужно обращаться к оригинальной статье. Однако интересно ознакомиться с мотивацией Гельмгольца к изучению, прежде всего, вихревого движения. Вот что он говорит (в переводе Тэта) До сих пор при интегрировании гидродинамических уравнений допускалось, что составляющие скорости каждого элемента жидкости в трех направлениях, перпендикулярных друг другу, являются дифференциальными коэффициентами (по отношению к координатам) определенной функции, которую мы назовем потенциалом скорости. Лагранж без сомнений показал, что это допущение законно, если движение жидкости вызвано силами, имеющими потенциал, и продолжается под их действием а также что влияние движущихся твердых тел, контактирующих с жидкостью, не влияет на законность такого допущения. И, поскольку многие природные силы, поддающиеся математически точному определению, можно выразить в виде дифференциальных коэффициентов потенциала, еще большее число математически исследуемых случаев движения жидкости принадлежит к тому классу, в котором существует потенциал скорости.  [c.682]

Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]

Дифференциальные уравнения движения. Если спроектируем основное уравнение моментов (14) на стереонодальные оси Ох у г и примем во внимание выражения (18), а также формулы (И), (12), (13), (15), то для гироскопического твердого тела с круговым основанием получим уравнения  [c.197]


Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

Исследователи, изучающие движение сыпучей среды, из общих законов механики могут предсказать основные качественные черты движения. Поэтому к математическим способам описания неизвестных эмпирических зависимостей, в которых выбор вида аппроксимирующей функции осуществлен формальным образом, обычно не прибегают. Наиболее привычной формой описания движения являются дифференциальные уравнения. Достаточно просто решаются дифференциальные уравнения с постоянными коэффициентами. Поэтому сплошную среду описывают моделью, состоящей из системы твердых тел, связанных взаимно и с пове])Хностью лотка со стандартными элементами линейной упругости, линейной вязкости, сухого трения с постоянными коэффициентами и простейшими ударными элементами. Такие модели позволяют получить общее решение, поэтапно используя решения линейных систем. Число масс упругих, вязких, ударных элементов сухого грения определяет число посгоянных, подлежащих определению из эксперимента. С увеличением числа элементов возрастает точность описания экспериментальных результатов. Такие модели способны описывать с достаточной гочносгью все необходимые зависимости — = Кг (о), где вектор а — совокупность всех параметров, влияющих на /(, т. е пространство параметров, в котором ведется эксперимент. Решение дифференциальных уравнений движения дает теоретические значения К . Но эти значения зависят от численных значений параметров модели с . Их определяют, минимизируя квадратическую ошибку между экспери енгальными значениями (aj и теоретическими значениями подсчитанными при тех же комбинациях параметров а,-, при  [c.90]

Для решения большинства своих задач гидроаэро- и газодинамика применяют строгие математические приемы интегрирования основных дифференциальных уравнений при установленной системе граничных и начальных условий или другие эквивалентные им математические методы (например, конформное отображение в задачах плоского движения идеальной жидкости). Для получения суммарных характеристик используются такие общие теоремы механики, как теорема количества и моментов количеств движения, энергии и др. Однако большая сложность и недостаточная изученность многих явлений вынуждают механику жидкости и газа не довольствоваться применением строгих методов теоретической механики и математической физики, столь характерных, например, для развития механики твердого тела, но и широко пользоваться услугами всевозможных эмпирических приемов и так называемых нолуэмпирических теорий, в построении которых большую роль играют отдельные опытные факты. Такие отклонения от чисто дедуктивных методов классической рациональной механики естественны для столь бурно развивающейся науки, как современная механика жидкости и газа.  [c.15]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]


В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]

Движение стола может оказаться неустойчивым в результате воздействия на систему стол — станина — привод как процесса трения в направляющих, так и процесса резания. Часто, особенно при выполнении финишных операций и при перестановках, трение является существенной или основной нагрузкой системы. Исходя из этого, составим дифференциальные уравнения движения стола тяжелого станка на холостом ходу. Из всех шести степеней свободы, которыми обладает стол как твердое, жесткое тело, следует рассматривать те, по которым стол может колебаться с наибольшими отклонениями на низких частотах. В результате теоретического и экспериментального анализа механической системы тяжелого станка, проведенного инж. Г. Н. Лимаренко, выбраны две обобщенные координаты (степени свободы) г — вдоль направляющих станины и <р — вокруг вертикальной оси, проходящей через центр жесткости (поворота) стола (рис. 106, а).  [c.227]


Смотреть страницы где упоминается термин Основные дифференциальные уравнения движения твердого тела : [c.196]    [c.13]    [c.275]    [c.2]    [c.400]    [c.165]   
Смотреть главы в:

Метод расчета движения жидкости  -> Основные дифференциальные уравнения движения твердого тела



ПОИСК



Движение дифференциальное

Движение твердого тела

Движение твердого тела основное

Движение твердых тел

Дифференциальное уравнение движения

Дифференциальное уравнение твердого тела

Дифференциальное уравнение, движени

Основное уравнение движения

Основные движения твердого тела

Основные дифференциальные уравнения

Основные уравнения движения

УРАВНЕНИЯ движения твердых тел

Уравнение основное

Уравнения движения твердого тела

Уравнения движения твердого тела дифференциальные

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте