Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Краткое изложение и выводы

Краткое изложение и выводы  [c.139]

Подсистема дачи разъяснений Часть экспертной системы, логически обосновывающая или объясняющая свои выводы посредством выдачи краткого изложения правил вывода и данных, использовавшихся для того, чтобы получить это заключение.  [c.360]

В заключение этого исследования не бесполезно кратко изложить условия, которые мы должны были последовательно вводить для того, чтобы можно было выразить действие А через q, q и и чтобы были справедливы изложенные выше выводы. Этих условий три 1) лагранжева система должна быть нормальной, т. е. гессиан кинетического потенциала 2 не должен быть тождественно равен нулю 2) функция Гамильтона Я(9 ), по предположению, не зависящая от t, должна явно содержать dt, т. е. не должна быть однородной нулевой степени относительно q, для чего необходимо и достаточно,  [c.446]


Итак, закончено краткое изложение основных положений технической, термодинамики, и нам хотелось бы еще раз обратить внимание читателя на следующее обстоятельство. Как уже отмечалось во введении, термодинамика построена весьма просто опытным путем установлены два основных закона, и применение к ним обычного аппарата математического анализа позволило получить все те разнообразные выводы, которые были предложены вниманию читателя. В этой простоте — универсальность термодинамики, выделяющая ее из многих других физических теорий. Мы хотим закончить эту книгу словами А. Эйнштейна Теория производит тем большее впечатление, чем проще ее предпосылки, чем разнообразнее предметы, которые она связывает, и чем шире область ее применения. Отсюда глубокое впечатление, которое произвела па меня классическая термодинамика. Это единственная физическая теория общего содержания, относительно которой я убежден, что в рамках применимости ее основных понятий она никогда не будет опровергнута (к особому сведению принципиальных скептиков) .  [c.502]

В связи со сказанным целесообразно подойти более строго к проблеме вывода кинетического уравнения и к его возможным обобщениям. Это можно сделать с помощью весьма общего и строгого метода, предложенного Н. Н. Боголюбовым [38, 39], к краткому изложению которого мы и переходим.  [c.474]

В ЭТОМ небольшом по объему, но богатом по содержанию и глубине излагаемых вопросов сочинении дается оригинальный, строго логически развивающийся метод построения основ термодинамики. Отдельные формулировки и выводы проводимых в нем исследований даются в трактовке, глубоко вскрывающей основную сущность расс-матриваемых явлений. Изложению методов обоснования отдельных положений термодинамики предшествует критический анализ существовавших и существующих методов, показывающий их особенности и значение. Рассматриваемое сочинение изложено кратко с присущими автору логичностью, четкостью и глубиной.  [c.351]

Автор подробно излагает методику работы с его книгой, рекомендует иметь модели описываемых в книге машин и водить учеников в те места, где работают изучаемые машины. Значительную часть объема книги занимает разбор устройства и работы машин. Вопросы движения — равномерного и равнопеременного — рассматриваются весьма кратко. Изложение материала в Руководстве ведется (посредством определений, описаний, в некоторых случаях даются формулы, численные примеры. Выводов, доказательств <нет.  [c.105]

Отчет по каждой лабораторной работе должен содержать краткое изложение теоретической сущности изучаемого вопроса схему установки и пояснения к ней результаты измерений, их обработку в виде таблиц, графиков и т. п. оценку погрешностей измерений выводы в виде обсуждения полученных результатов, сравнения их с теоретическими и с литературными данными список использованной литературы.  [c.504]


В данном параграфе приводятся описания фильтрационных моделей, рассматриваемых в книге. Учитывая, что вопросам обоснования и выводов соответствующих уравнений посвящено большое количество работ [1,9,14,16,23,24,25], ограничимся кратким изложением. Из огромного количества модельных подходов, используемых для описания фильтрации жидкостей в пористых средах, рассмотрим лишь семь, наиболее распространенных и существенных, на наш взгляд, с точки зрения интерпретации результатов исследований пластов нестационарными гидродинамическими методами.  [c.5]

В главе I дается краткое изложение кинематики точки, основ кинематики сплошной деформируемой среды и абсолютно твердого тела. Абсолютно твердое тело рассматривается как сплошная недеформируемая среда. Выводится формула Коши — Гельмгольца, выражающая закон распределения скоростей точек элемента объема сплошной среды. Показывается, что при отсутствии деформаций можно совершить переход от элемента объема к конечному объему и, соответственно, от формулы Коши — Гельмгольца к основной формуле кинематики абсолютно твердого тела —формуле Эйлера, В 8 главы I дается, кроме того, прямой вывод формулы Эйлера ).  [c.6]

Общие результаты, которые мы установили в 1 и 2 относительно плоского твердого движения синтетическим путем, могут быть выведены аналитически. Мы здесь займемся в дополнение к изложенному возможно кратким аналитическим выводом основных формул, чтобы воспользоваться ими для установления некоторых дальнейших свойств плоского движения.  [c.266]

В этой небольшой книге я попытаюсь представить краткий и простой обзор современного развития термодинамики необратимых процессов. Для того чтобы изложение было достаточно цельным, здесь вкратце формулируются многие выводы классической термодинамики, имеющие непосредственное отношение к излагаемому материалу в частности, это относится к двум началам термодинамики. Поэтому от читателя не требуется подробного знакомства с классической термодинамикой, хотя несомненно, что некоторое знание ее методов облегчит понимание текста.  [c.16]

Систематическое изложение теории регулярного теплового режима и ее приложений до сих пор в литературе отсутствует. Научные коллективы и отдельные исследователи, пользующиеся теорией регулярного режима в своей практической деятельности, руководствуются статьями, рассеянными по разным техническим журналам, и техническими отчетами по отдельным работам. Отрывочный характер получаемых таким путем сведений, отсутствие выводов расчетных уравнений, отсутствие кратких пояснений о технике экспериментирования влекут за собой в некоторых случаях неправильное применение теории. Настоящая монография ставит своей целью восполнить указанный пробел в существующей литературе она содержит изложение теории регулярного режима и ее наиболее важных приложений.  [c.9]

Так как подробное изложение проделанной в Цюрихе работы выходит за рамки этой статьи, то здесь ограничимся краткими выводами и сообщением полученных результатов.  [c.276]

Теперь представим основные уравнения и сделаем краткие замечания по поводу их решения. Уравнения выводятся согласно трактовке Шапиро [40]. При изложении решения методом характеристик мы следуем не Шапиро, который опирался на оригинальную работу [59], а методике, предложенной в работе [42].  [c.338]

Методы векторного и тензорного исчислений играют важную роль в преподавании механики сплошных сред, электродинамики и некоторых других разделов теоретической и математической физики, непосредственно связанных с теорией поля. Объясняется это тем, что используемая в этих методах математическая символика полностью отражает и обобщает действительные связи между физическими величинами. За недостатком места нам приходится довольствоваться приведением в настоящем параграфе лишь краткой, преследующей чисто справочные цели сводки употребительных формул векторного и тензорного исчислений в прямоугольных декартовых и криволинейных координатах. Пользование в тексте ссылками на эти формулы (без вывода их) значительно облегчает изложение математической стороны курса и позволяет более выпукло показать физическую сущность его содержания. В сводке применена отличная от основного текста нумерация формул, оправдывающая себя при многократном использовании сводки.  [c.14]


На примере рассмотрения П. Хиллом эргономических вопросов синтеза человеко-машинных систем особенно четко проявляется стиль его изложения — очень лаконичный и емкий. Автор не стремится детализировать все рассматриваемые вопросы, не ставит перед собой задачу снабдить читателя достаточными профессиональными знаниями по каждому аспекту научных основ конструирования. Он кратко сообщает историю вопроса, убедительно показывает его связь с конструкторскими проблемами, обобщает основные достижения в его исследовании, указывает полученные в этой области практически важные выводы, а также типы сформулированных методов и рекомендаций.  [c.8]

В главе 2 описываются те свойства векторов, которые важны при изучении движения частиц жидкости и при рассмотрении гидродинамических уравнений. Векторы вводятся здесь независимо от выбора системы координат. Основные свойства векторных операций выводятся операторным методом, который в изложенной здесь форме легко применяется и непосредственно приводит к теоремам Стокса, Гаусса и Грина. Так как эта книга посвящена гидродинамике, а не векторам, то теория последних излагается кратко. С другой стороны, при изложении этой теории имелось в виду помочь читателям, незнакомым с де1 ствиями над векторами читателю рекомендуется полностью и детально изучить содержание этой главы, что необходимо в силу большого числа ссылок на нее. Этот труд хорошо вознаграждается при стремлении понять физи-чс скую сторону рассматриваемых явлений, которая особенно неясна при использовании специальных систем координат. В главе 3 общие свойства движения непрерывной жидкой среды, динамические уравнения, давление, энергия и вихри изучаются в свете векторных формулировок, преимущество которых вполне очевидно.  [c.10]

Примерное содержание пояснительной записки назначение и область применения машины, краткое обзорное изложение вопросов темы описание машины в целом, ее работы, описание проектируемых конструкций, техническая характеристика основные расчеты к эскизному решению подробные кинематические и прочностные расчеты проектируемых конструкций определение технико-экономических показателей технико-эксплуатационные вопросы выводы.  [c.46]

В заключение сделаем некоторые замечания о характере изложения. Мы сознательно отказались от лаконичного стиля изложения теории. Это обусловлено нашим желанием добиться повсюду в этой монографии точности и конкретности, даже в ущерб краткости и изяществу изложения. Мы не останавливались перед тем, чтобы дать подробное объяснение или вывод со всеми выкладками, если мы считали это необходимым. При решении вопроса о том, следует ли данный конкретный вопрос рассматривать во всех деталях, мы руководствовались тем, имеется ли в литературе его изложение в ясной форме, а также практикой обсуждения вопроса с коллегами. Мы предпочли показаться излишне многословными, чем быть настолько краткими, чтобы существовала возможность оказаться непонятными. Если изложение каких-то вопросов покажется некоторым читателям слишком подробным, мы надеемся, что эти пояснения, касающиеся стиля, будут достаточными, чтобы сохранить их интерес к проблеме в целом.  [c.18]

Вывод брэгговского условия дифракции содержит краткое и ясное изложение условия интерференции с взаимным усилением для волн, рассеянных точечными зарядами, расположенными в узлах пространственной решетки. Одиако если нас интересует интенсивность излучения, рассеянного пространственным распределением электронов внутри каждой элементарной ячейки, то следует произвести более подробный анализ. Наиболее  [c.72]

Вся гл. 2, за исключением изложенного в разд. 2.7 учета обусловленной трением диссипации и кратких исследований ее влияния в других местах, основана на приведенных выше обш,их уравнениях для продольных волн в жидкостях (2)—(4) и уравнении сохранения энтропии для частицы жидкости (разд. 2.6). В разд. 2.1 и 2.2, однако, следствия из этих уравнений выводятся, во-первых, только при условии, что свойства жидкости, включая ее энтропию 8, а также свойства трубы (или канала) считаются продольно однородными, так что уравнения (2) принимают вид  [c.121]

Книга состоит из трех основных частей и приложений. Первая часть является введением к систематическому изложению статистической механики. Она посвящена термодинамике и классической кинетической теории. Большое внимание уделяется Я-теореме Больцмана. Такое введение обусловлено педагогическими соображениями и позволяет автору на примере классической кинетической теории разъяснить принципы, лежащие в основе статистической механики. Кроме того, главы, посвященные классической кинетической теории, имеют и самостоятельный интерес, так как в них кратко и ясно изложены вопросы, Связанные с выводом уравнений гидродинамики, а также метод Энскога и Чепмена для решения кинетического уравнения Больцмана.  [c.5]

Стремление сделать книгу как можно более физической диктовало также и выбор предпочтительных методов исследования. Уравнения турбулентного движения всегда оказываются незамкнутыми (содержащими больше неизвестных, чем уравнений), и поэтому задачи теории турбулентности обычно не могут быть непосредственно сведены к нахождению единственного решения некоторого дифференциального уравнения (или уравнений), определяемого известными начальными и граничными значениями. В этих условиях неизбежно приходится привлекать помимо уравнений движения какие-то дополнительные соображения. Нам представляется, что среди таких дополнительных соображений наиболее отчетливый физический смысл имеют соображения подобия (опирающиеся на инвариант ность условий задачи относительно некоторых групп преобразований) и соображения размерности (основанные на выделении физических параметров, влияющих на исследуемое турбулентное течение). Поэтому мы старались наиболее подробно осветить именно выводы из соображений размерности и подобия, которые могут применяться в теории турбулентности значительно шире, чем это обычно предполагается. Соответственно полуэмпирическим теориям турбулентности, использующим более специальные гипотезы, в книге уделено сравнительно немного места особенно кратко здесь изложены классические применения полуэмпирических теорий к течениям в трубах, каналах и пограничных слоях, подробно изложенные в известных монографиях С. Гольдштейна (1938), Л. Г. Лойцянского (1941) и Г. Шлихтинга (1951) (вместе с полуэмпирическими теориями свободной турбулентности , вовсе опущенными в нашей книге). Однако мы включили все же некоторые сравнительно новые и м цее известные применения полуэмпирических теорий и рассмотрен ряд применений полуэмпирической теории турбулентной  [c.29]


Однако для ряда жидкостей или в случае течения обычных жидкостей в тонких трубках этот принцип классической гидродинамики становится неверным. В этом случае надо воспользоваться законами течения асимметричного потока жидкости, для которого тензор вязких напряжений несимметричен (а о). Тогда необходимо рассмотреть еще один закон сохранения момента количества движения, так как перенос импульса видимого движения будет происходить не только из-за поступательного движения частиц, но и за счет вращеция частиц или ротационной диффузии. Впервые уравнение переноса для антисимметричного тензора давлений было вьшедено де Гроотом в его фундаментальной монографии 1Л. 1-4]. Ниже дано краткое изложение этих выводов.  [c.42]

Поскольку первоначальный вариант теории Лондона весьма точно и подробно был изложен по крайней мере в двух квпгах Ф. Лондона [13] и Лауэ [37], то здесь мы дадим лишь краткий обзор основных положений этой теории. После этого будет показано, как эта теор1гя может быть получена пз квантовой механики. Затем обсудим теорию Пиппарда и вывод ее на основе модели с энергетической щелью.  [c.691]

В 1978 г. Каннинен [3] провел критическую оценку численных методов, используемых в динамике разрушения. При сравнении методов конечных разностей и конечных элементов Каннинен пришел к выводу, что метод конечных элементов в силу той простоты, с которой моделируются необходимые сингулярности, оказывается более пригодным для исследования стационарных трещин в условиях динамического нагружения, в то время как метод конечных разностей оказывается более удобным, чем метод конечных элементов при исследовании развивающихся трещин. В последующие годы были достигнуты колоссальные успехи в конечно-элементном моделировании динамического развития трещин. В этой главе приведено краткое изложение этих достижений.  [c.268]

Я перейду теперь к краткому изложению программы предлагаемого мною курса. Но прежде я обращаюсь к вам, мои будущие слушатели, чтобы отстранить от вас сомнение в излишней обширности того материала, о котором я упомяну. Вот уже 15 лет, как я с интересом занимаюсь гидродинамикой, я много передумал и переработал разных вопросов за это время. Я старался отбросить вссл что не заключало в себе успешных результатов, и изложить возможно простым образом те выводы, которые к ним приводили. Таким образом, получился довольно сжатый курс, который я и хочу предложить вашему вниманию. Я расположил его на 10 двухчасовых лекций.  [c.321]

Хорошо изложен в учебнике политропный процесс. В постановке теории этого процесса Мерцалов придерживался тех же взглядов, что Орлов и Радциг. Учебник Мерцалова был третьим русским учебником, в котором говорилось о политропном процессе. Интересно и очень обстоятельно в учебнике Мерцалова проводится исследование общих особенностей циклов. Исследование циклов проводится посредством диаграмхмы Т—х. Здесь поставлен вопрос о равновыгодном (по к. п. д.) данному циклу цикла Карно и условиях его осуществления. Оригинальными и интересными являются в учебнике Мерцалова и многие другие обоснования и выводы, о чем подробно было сказано при рассмотрении этого учебника. Наиболее кратко и можно сказать менее обстоятельно изложена в учебнике его третья часть Теория тепловых двигателей .  [c.128]

Резюмируя изложенное, можно сказать, что учебник Погодина, выдержавший в течение 10—12 лет три издания (типографских) представляет собой краткий элементарный учебник по технической термодинамике с продуманным построением и хорошим изложением. В учебнике Погодина отсутствуют многие темы, рассмотренные в изданных до него учебниках Радцига, Мерцалова и Зернова. Как уже говорилось, в учебнике Погодина обращают на себя внимание метод вывода интеграла Клаузиуса (для идеальных газов) и вывод формулы термического к. п. д. цикла Карно.  [c.141]

Ниже мы кратко изложим метод преобразования Лапласа, приводя формулировку теорем и схемы их доказательств, отвечающие поставленным здесь задачам более полное изложение можно найти в работах, специально посвященных этому предмету [1,8—10]. Как отмечалось выше, решения, полученные методом Бромвича — Джефриза, часто встречаются в литературе, посвященной теплопроводности операционные выражения, используемые ими для V, всегда отличаются множителем р от полученных нами выражений для V, записанных в принятых ниже обозначениях. Метод вывода решений с помощью теории контурного интегрирования одинаков в обоих случаях, и поэтому статьи, в которых использованы одни обозначения, легко читать лицам, привыкшим к другим обозначениям.  [c.293]

В гл. 1 даны краткие сведения о соотношениях теории тонких оболочек и круговых стержней, необходимые для изложения результатов в последующих главах. Рассмотрена составная оболочеч-ная конструкция, состоящая из оболочек вращения, подкрепленных кольцом. Для нее в матричной форме записаны общие соотношения, связывающие перемещения кольца и параметры произвольной внешней локальной нагрузки. Авторы отказались от традиционного для подобных книг подробного изложения Известных положений теории оболочек. Основы и методы теории изложены в упомянутых монографиях и некоторых других работах. Приведенные в главе сведения кратки и даны в основном без выводов.  [c.3]

Далеко не случайно мы привели в разд. 4.3 отнюдь не самый простейший способ вывода канонэтеского ансамбля. Мы стремились подчеркнуть тот фундаментальный факт, что на само существование канонического ансамбля (а следовательно, и на само термодинамическое описание вещества) налагаются специфические динамические о аничения, связанные с видом гамильтониана. Наше изложение, таким образом, подготовило почву для новейших более строгих теорий, краткий обзор которых дан в разд. 4.7.  [c.165]

Статья начинается по существу с гл. 2. где выводятся уравнения движения. Мы старались дать строгое и полное исследование исходных предположений, основываясь на концепции движения как непрерывного точечного преобразования пространства в себя. В заключительной части этой главы рассматриваются вопросы, связанные с преобразованием координат и вариационными принципами механики жидкости. Содержание гл. 3 не выходит в основном за рамки общепринятых учебников, однако, выпустив ее, мы нарущили бы единство изложения. Кроме того, в этой главе мы впервые знакомимся со многими идеями, играющими важную роль в дальнейщем, при изучении более сложных вопросов. В гл. 4 мы вновь возвращаемся к исследованию исходных предположений и кратко излагаем термодинамику движения жидкости, включая систему постулатов соответствующих разделов классической термодинамики. Представления, развитые в этом разделе, могут служить моделью при изучении многокомпонентных гидродинамических систем.  [c.6]

Сочинение проф. А. В. Плотникова является кратким, оригиналь-ным и интересным учебником оно написано хорошим языком и содержит детально продуманное, сжатое изложение основных понятий и положений термодинамики и термохимии. Автор не останавливается на второстепенных вопросах, и это позволило ему в небольшом по объе.му учебнике дать не только основные знания по технической термодинамике (того периода), но и изложить основы кинетической теории газов, элементы термохимии, правило фаз и пр. При этом изложение рассматриваемых вопросов не является описательным и элементарным оно опирается на современные по тому времени научные данные. Аналитические соотношения и формулы в этом учебнике обоснованы строго продуманными выводами. В учебнике имеются решенные задачи, что позволяет показать практическое значение форм л и уравнений, а также применение их при проведении термодинамических расчетов. Учебник Плотникова является вторым русским учебником по термодинамике, в котором даются основы термохимии. Можно уверенно сказать, что из рассматриваемых нами учебников того времени он является одним из лучших.  [c.173]


Второе начало термодинамики и его аналитическое выражение даются в гл. 5 обычным методом — по Клаузиусу. Изложение этой части очень краткое отдельные вопросы рассматриваются в следующем порядке второе начало перпетуум мобиле второго рода понятие об обратимом процессе (как процессе, возможном в прямом и обратном направлениях, без указания условий обратимости) цикл Кзрно с выводом формулы термического к. п. д. обратный цикл Карно (с указанием, что он относится к работе холодильных машин)  [c.175]

После того как принцип максимума и его доказательство были опубликованы, появилось много работ, где были даны различные трактовки этого необходимого критерия оптимальности. Кроме того, появилась также большая серия работ, где принцип максимума прилагался к решению той или иной конкретной задачи. Полный обзор этих исследований в настоящем кратком очерке невозможен. Некоторые из результатов, относящихся к данным вопросам, будут обсуждены ниже при изложении развития классических вариационных методов исследования и в связи с обобщениями задач об оптимальном управлении и соответствующими обобщениями критериев оптимальности. Здесь отметим два важных результата, дополнивших первоначальную теорию принципа максимума. Был дан вывод принципа максимума, базирующийся на непосредственном вычислении первой вариации минимизируемого функционала. Была обсуждена связь этого принципа с теми соотношениями, которые следуют для аналогичных задач, если их исследовать исходя из теории динамического программирования, разработанной в США Р. Беллманом (см. 13). Эти вопросы были разработаны в серии статей Л. И. Розоноэра (1959).  [c.189]

Простейшее предположение, служащее первым шагом учета атомной структуры вещества, заключается в рассмотрении вещества как совокупности определенных физических объектов —- молекул, которые могут поляризоваться и, следовательно, приобретать под действием внешнего поля электрический и магнитный моменты. В первом приближении можно предположить, что компоненты этих моментов являются линейными функциями компонент поля в обт,ем случае направление вектора момента не совпадает с направлением поля. Из этого предположения вытекает много следствий, на которых здесь мы остановимся лишь очень кратко. Мы ограничимся изотропными немагнитными веществами и рассмотрим вначале зависимость электрических постоянных от плотности длн вещесгва, состоящего из одинаковых молекул. Мы исследуем также зависимость показателя преломления от частоты. Здесь мы приведем лишь несколько упрощенные рассуждения, а строгий, хотя и более формальный, вывод главного результата (формулы Лорентц — Лоренца) будет изложен в 2.4.  [c.95]

Содержание книги можно разбить на две в известной степени независимые части. В первой из них (гл. 1—9) после изложения используемого математического аппарата и формулировки фундаментального метода Иоста подробно исследуется уравнение для парциальных амплитуд и излагаются физические выводы для парциальных и полных амплитуд. При этом авторы применяют методы, близкие к тем, которые применялись в их собственных оригинальных работах, хотя возможны (а подчас и более просты) другие подходы, использованные, например, в цитируемых работах Барута и Цванцигера, Ньютона, Грибова, Брауна, Фивеля, Ли и Сойера и ряда других. Во второй части (гл. 10—13) более конспективно приводятся результаты, получающиеся без применения разложения по парциальным волнам (в их числе дисперсионные соотношения), а также кратко рассматриваются обобщения на случай многоканальных задач и так называемых сингулярных потенциалов. Относительно подробно излагается обратная задача восстановления потенциала.  [c.7]


Смотреть страницы где упоминается термин Краткое изложение и выводы : [c.413]    [c.478]    [c.115]    [c.190]    [c.173]    [c.190]    [c.180]    [c.10]    [c.76]    [c.90]    [c.304]   
Смотреть главы в:

Оптические вычисления  -> Краткое изложение и выводы



ПОИСК



Вывод

Вывод-вывод

Краткие выводы

Краткое изложение



© 2025 Mash-xxl.info Реклама на сайте