Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Значение среды нагрева

ЗНАЧЕНИЕ СРЕДЫ НАГРЕВА  [c.55]

Расчёт ведётся по методу последовательного приближения, причём порядок действий зависит от того, какие из режимных характеристик заданы. Если, например, заданы расходы теплоносителей и две температуры, то задаются одной из недостающих температур, определяют по уравнению (1) количество переданного тепла и четвёртую крайнюю температуру. Затем находят средние скорости рабочих жидкостей, а также температуры, определяющие коэфициенты теплоотдачи, и подсчитывают средний коэфициент теплопередачи и средний температурный напор. Вычисленное после этого из уравнения (2) значение поверхности нагрева должно совпадать с заданным. Если совпадение недостаточно точно, то расчёт повторяют снова. В зависимости от комплекса заданных величин, среди которых в проверочном расчёте обязательно должна фигурировать поверхность нагрева, порядок действий может несколько меняться.  [c.131]


Если полученные расчетом параметры (температуры поверхности тела, максимальная разность температур по сечению, температура греющей среды) представляются неудовлетворительными по тем или иным причинам, следует повторить расчет, выбрав соответственно новое значение времени нагрева (т. е. величины ЕОк).  [c.323]

Коэффициент теплопередачи для данного случая имеет следующие значения после нагрева в электропечи Ох = 50, в масле = 90, в кипящей воде = 800 после охлаждения в твердой углекислоте % = 40, в ацетоне с твердой углекислотой = 570, в спирте с твердой углекислотой = 380 в жидком азоте а = 700. Для последних четырех сред указано приближенным, так как его величина переменна.  [c.390]

Среда нагрева имеет двоякое значение. Во-первых, от среды нагрева зависит скорость передачи тепла, а следовательно, и скорость нагрева. Хорошо известно, что передача тепла, а значит, и нагрев в жидкости происходят гораздо быстрее, чем в атмосфере газа или воздуха. Во-вторых, среда, в которой происходит нагрев, может вызвать обезуглероживание и окисление поверхности деталей, что крайне нежелательно.  [c.55]

При 0 > 4ач среда будет нагреваться, а при / < охлаждаться. Для удобства будем относить каждый раз температуру среды к максималь-но.му значению. Это значит, что в случае нагрева 4 рд а в случае  [c.335]

Трение друг о друга двух соприкасающихся твердых тел представляет собой сложное физическое явление, сопровождаемое нагревом трущихся тел, их электризацией, разрушением поверхностей, диффузией вещества и т. д. Явление трения можно себе представить как вдавливание, сопровождающееся сцеплением, бугорков шероховатости (иногда волнистости) поверхности одного нз тел в промежутки между бугорками другого, вызывающее при взаимном движении тел деформацию, а иногда и разрушение этих бугорков. Интенсивность такого рода взаимодействия трущихся поверхностей зависит от многих обстоятельств, среди которых наибольшее значение имеют интенсивность сдавливания тел, характеризуемая нормальной составляющей реакции взаимодействия между телами, скорость их относительного перемещения, степень обработки поверхностей, наличие смазки.  [c.74]

Иначе обстоит дело в отношении газов трех- и многоатомных. Замечено было, что излучение трехатомных газов и среди них водяного пара и углекислого газа имеет существенное значение в теплообмене между продуктами сгорания топлива и стенками котельных поверхностей нагрева.  [c.262]

Массовую скорость pw воды в экономайзере выбирают равной 600—800 кг/(м с). Большие значения принимают для кипящих экономайзеров и котлов СКД- По условиям надежности работы металла труб скорость воды w при минимальной нагрузке не должна быть ниже 0,4—0,5 м/с. При w < 0,3 м/с наблюдается расслоение среды в трубах. Газы, растворенные в воде, при нагреве выделяются и собираются в верхней части трубы. Возникает вероятность возникновения газовой кислородной коррозии металла с последующим образованием свищей в трубах. Кроме того, наличие газовой подушки в трубе может привести к перегреву стенки экономайзера й ее разрыву, так как газ отводит теплоту от металла гораздо хуже воды.  [c.106]


Массовая скорость среды характеризует охлаждающую способность потока. Рекомендуемые значения pw для поверхностей нагрева котлов приведены ниже, кг/(м с).  [c.164]

После топки наибольшее значение разности температуры дымовых газов и тепловоспринимающей среды приходится на первые ряды кипятильных труб котлов с развитыми конвективными поверхностями нагрева и на фестон экранных котлов. Поэтому эти поверхности нагрева используются очень эффективно при большом тепловом напряжении, в соответствии с чем для передачи заданного количества тепла в них требуются относительно небольшая поверхность нагрева и, следовательно, относительно небольшая затрата металла.  [c.309]

При кипении жидкости внутри труб и каналов в условиях вынужденного движения интенсивность отвода пара от поверхности и соответственно величина i зависят от скорости движения и характера турбулентного перемешивания в потоке. Большое влияние в этих условиях на оказывает также паросодержание самого потока. Опыты показывают, что при увеличении паросодержания значения pi уменьшаются. При кипении с недогревом вследствие конденсации паровых пузырьков около теплоотдающей поверхности благоприятные условия для подвода жидкости к поверхности нагрева сохраняются вплоть до очень высоких тепловых потоков Поэтому значения pi при кипении с недогревом обычно оказы ваются достаточно большими, причем с увеличением степени не догрева (определяемого величиной = 4 — ж. где — сред няя температура жидкости в данном сечении) pi увеличивается  [c.133]

Высокотемпературная коррозия поверхностей нагрева котла является одним из частных случаев химического воздействия окружающей среды в результате которого происходит непрерывное утонение стенки труб. С течением времени образующаяся на поверхности трубы оксидная пленка приводит к снижению интенсивности коррозии. Всякие повреждения защитной оксидной пленки на трубах поверхности нагрева снижают ее диффузионное сопротивление и тем самым неизбежно приводит к интенсификации коррозии. Причинами разрушения оксидной пленки на трубах могут быть разнотипные изменения температурного режима поверхностей нагрева из-за изменения нагрузки, остановок и растопки котла. Особенно важное значение при этом имеют полные или частичные ее разрушения при циклических очистках поверхностей нагрева котла от золовых отложений.  [c.188]

Механизм защиты сплавов от окисления атмосферным кислородом технологическими покрытиями и жаростойкими эмалями весьма сложен. Он зависит от состава покрытия, сплава, особенностей их взаимодействия, температуры, времени и других условий нагрева. Решающее значение имеет образование кислородных вакансий в покрытиях и их заполнение кислородом из окружающей среды.  [c.177]

Исследуемые металлические образцы, помещенные в вакуум или в среду защитных газов, нагреваются также за счет теплового действия электрического тока, подводимого к ним непосредственно. По характеру передачи электрического тока к образцам можно выделить два основных способа контактный и бесконтактный. При контактном нагреве образец непосредственно присоединяют к источнику переменного тока промышленной частоты (50 Гц) низкого напряжения. Использование постоянного тока нерационально, поскольку вследствие электролиза может происходить перенос содержащихся в образце примесей, в частности углерода, что изменяет химический состав образца по его длине. Скорость контактного нагрева образца зависит от величины его электрического сопротивления и эффективного значения пропускаемого тока /дф, протекающего через образец. Количество выделяющегося в образце тепла может быть определено из уравнения Ленца—Джоуля  [c.75]

Абсолютно полного снятия макронапряжений после нагревов обычно не достигают, сохраняется небольшой разброс на уровне О—5 кгс/мм при нагревах в вакууме и до 10—15 кгс/мм при нагревах в воздушной среде. Из возможных причин сохранения небольших значений макронапряжений после нагревов можно указать на селективное окисление жаропрочных сплавов, сопровождаемое возникновением термических сжимаюш,их напряжений, а также влиянием процессов травления, вызываюш их сжимающие напряжения в зоне травления за счет внедрения (адсорбции) в металл продуктов реакции.  [c.148]


Определенное влияние на изменение выхода ВЭР и экономический показатель эффективности процесса нагрева оказывает угар металла V, тесно связанный с режимными показателями работы печи, конструктивными особенностями ее выполнения и видом используемого энергоносителя. С увеличением угара металла (рис. 2-8 — крайние значения У характерны для пламенных печей окислительного нагрева и нагрева в контролируемой среде) почти стабильной остается удельная выработка пара в системе испарительного охлаждения и в утилизационном устройстве. Однако экономия приведенных затрат на тонну металла резко падает, При нагреве 7—606 97  [c.97]

Испытания велись до достижения на поверхности трения значений установившейся температуры для данных условий работы. По графикам, построенным для каждого опыта, определялась установившаяся температура нагрева поверхности трения и температура других точек тормоза. Наибольшее значение для выбора тормоза имеет нагрев поверхности трения поэтому в дальнейшем изложении приводятся значения установившихся температур этой поверхности. Так как при испытаниях более удобно измерять не температуры нагрева, а температуры перегрева, что исключает влияние температуры среды, то указываемые далее  [c.623]

Как видно по тепловым характеристикам, влияние изменения условий работы по-разному сказывается на величине установившейся температуры тормозов разных габаритов. Например, охлаждающие ребра на тормозных шкивах малоэффективны для тормоза со шкивом диаметром 100 мм и имеют большое значение для тормозов со шкивами больших размеров. Охлаждение тормоза, работающего на открытом воздухе, более эффективно для тормозов меньших размеров. Тепловые характеристики, представленные на фиг. 371—373, дают ясное представление о влиянии изменения условий работы на величину установившейся температуры поверхности трения тормоза и на темп нарастания температуры, о котором можно судить по постоянной времени нагрева. Тепловые характеристики тормозов были построены для ПВ = = 40% и температуры окружающей среды, равной 25° С. Поэтому при определении по ним значения установившейся температуры должна быть учтена действительная относительная продолжительность включения и действительная температура среды. Действительная установившаяся температура определяется по формуле  [c.641]

Под предельной температурой применения следует понимать верхний температурный предел надежной работы теплоносителя в течение длительного времени эксплуатации. При этом предельную температуру применения не следует рассматривать как явно выраженную и строго определенную границу начала разложения. Предельные температуры определяются на основании опытных данных исследования термической стойкости, полученных в условиях как статического, так и циркуляционного нагрева. Предельная температура применения имеет важное прикладное значение при выборе тех или иных веществ, используемых в качестве теплоносителей. Необходимо отметить, что предельная температура применения не является однозначной характеристикой теплоносителя, так как она зависит от целого ряда факторов скорости циркуляции, давления, природы окружающей среды и др. Предельные температуры применения, приведенные в табл. 2-21, относятся к условиям отсутствия контакта теплоносителя с воздухом.  [c.72]

Как видно из графика, функция Рх.в Ро = Ох.ъ) вначале убывает, так как при этом вода на дне выгородки нагревается до меньшего значения. За счет этого увеличивается средний температурный напор между греющей и охлаждающей средами, что при одном и том же времени протекания процесса приводит к уменьшению давления в оболочке. Затем в большом диапазоне изменения G .b значение функции остается постоянным. Это можно объяснить тем, что описанный выше эффект уменьшения давления компенсируется увеличением давления за счет уменьшения свободного объема оболочки. Наконец, влияние второго фактора становится решающим и давление в оболочке начинает расти по мере, увеличения количества холодной воды на дне оболочки.  [c.98]

В экспериментальных работах, как правило, не определялась степень черноты использованных частиц. Так как поверхностные свойства, к которым относится и степень черноты, легко изменяются, в частности вследствие загрязнений, результаты измерений для одного и того же материала у разных исследователей оказались различными. В связи с этим интересны экспериментальные исследования, методика которых позволяет измерять степень черноты как ожижаемых частиц, так и поверхности слоя [139, 152]. Сравнение полученных по этой методике значений есл, соответствующих измеренным одновременно величинам вр, с расчетной кривой Бел (ер) приведено на рис. 4.12. Все экспериментальные точки расположены ниже кривой есл(ер), что свидетельствует об определенной систематической ошибке. Чтобы выяснить ее причину, разберем, как измерялась величина ер. Сущность фотометрической методики определения степени черноты состоит в следующем. В высокотемпературный псведоожиженный слой погружается визирная трубка. Снаружи ее прозрачного окошка закреплена миниатюрная модель а. ч. тела. Через некоторое время после погружения в дисперсную среду модель нагревается до температуры окружающего слоя. Затем через визирное окно фотографируются модель а. ч. тела и прилегающая к ней часть дисперсной системы. Измерив оптическую плотность изображений среды и модели а. ч. тела, по отношению их яркостей можно вычислить степень черноты окружения модели а. ч. тела.  [c.174]


Спекание проводят для повышения прочности предварительно полученных заготовок прессованием или прокаткой. В спрессованных заготовках доля контакта, между отдельными частицами очень мала и спекание сопровождается ростом контактов между отдельными частицами порошка. Это является следствием протекания в спекаемом теле при нагреве следуюш,их процессов восстановления поверхностных оксидов, диффузии, рекристаллизации и др. Протекание этих процессов зависит от температуры и времени спекания, среды, в которой осуществляется спекание и других факторов. При спекании изменяются линейные размеры заготовки (больн1ей частью наблюдается усадка — уменьшение размеров) и физикомеханические свойства спеченных материалов. Температура спекания обычно составляет 0,6—0,9 температуры плавления порошка однокомпонентной системы или ниже температуры плавления основного материала для композиций, в состав которых входят несколько компонентов. Время выдержки после достижения температуры спекания по всему сечению составляет 30—90 мин. Увеличение времени и температуры спекания до определенных значений способствует увеличению прочности и плотности в результате активизации процесса образования контактных поверхностей. Превышение указанных технологических параметров может привести к снижению прочности в результате роста зерен кристаллизации.  [c.424]

После крушения теории теплорода теплота окончательно рассматривается как энергия движения составляющих тело материальных частиц (атомов, молекул). Но между теплотой и механической энергией вскоре обнаружились принципиальные отличия. Например, при торможении автомобиля его тормозные колодки нагреваются, но обратный процесс абсолютно невозможен — сколько бы мы ни нагревали колодки, автомобиль все равно останется на месте. Закон сохранения и превращения энергии, раскрывая количественную сторону превращений энергии, ничего не говорит о принцигшальных качественных отличиях между ее различными формами. Можно указать на другие принципиальные особенности тепловых явлений. Одним из самых очевидных наблюдений является то, что при различных видах работы часть энергии выделяется в виде теплоты. В природе существует тенденция к необратимому превращению различных видов энергии в теплоту, поскольку обратное превращение тепла в работу, за исключением изотермических процессов, невозможно. Другой, не менее очевидной особенностью тепловых явлений является то, что нагретые тела всегда стремятся прийти в равновесие с окружающей средой. Но и в этих процессах передачи теплоты существует односторонность, которую Р. Клаузиус сформулировал в качестве тепловой аксиомы Теплота не может сама собой переходить от тела холодного к телу горячему . Значение этого положения оказалось настолько важным, что его стали рассматривать как одну из формулировок второго начала термодинамики. Л. Больцман писал Наряду с общим принципом (законом сохранения и превра]цения энергии. — О. С.) механическая теория тепла установила второй, малоутешительным образом ограничивающий первый, так называемый второй закон механической теории тепла. Это положение формулируется следующим образом работа может без всяких ограничений превращаться в теплоту обратное превращение тепла в работу или совсем невозможно, или возможно лишь отчасти. Если и в этой формулировке второй принцип является неприятным дополнением к первому, то благодаря своим последствиям он становится гораздо фатальнее .  [c.79]

Высокочастотная сварка. Исключительно важное, значение имеет сварка изделий при высокочастотном нагреве, особенно сварка продольных швов труб, профилей и оболочек кабелей [42]. В настоящее время на более чем шестидесяти станах высокочастотной сварки ежедневно изготавливается свыше 3 млн. м труб и профилей из ннзкоуглеродистых сталей и сплавов цветных металлов. Диаметр труб составляет 10 — 530 мм при толщине стенки 0,5—10 мм. Достоинства шовной сварки при высокочастотном нагреве заключаются в универсальности способа, позволяющего сваривать практически любые металлы без применения защитных сред в высокой экономичности процесса, связанной с локализацией энергии в узкой зоне кромок в высоком качестве соединения и большой скорости процесса, достигающей 120 м/мин. В некоторых случаях, например при сварке алюминиевых и стальных оболочек кабелей связи, высокочастотный метод является единственно возможным способом нагрева.  [c.213]

Тепловые потери калориметра возникают сразу же после начала подвода теплоты. Чем больше нагревается калориметр по сравнению с температурой окружающей среды t, тем больше и потери теплоты. Если бы теплота подводилась мгновенно, то за такой бесконечно малый промежуток времени калориметр вообще не имел бы потерь теплоты тогда конечная температура была бы выше, чем действительная 2, и достигала-значения 2 , а процесс нагревания проходил бы по прямой ВЕ с дальнейшим охлаждением калориметра по линии ЕВ. Требуется найгн значение ( 2—Л)о- Точка Е определяется экстраполяцией кривой ВС на момент времени то. Это можно сделать, так как закон охлаждения калориметра (кривая СВ или, как ее называют, кривая выбега) поддается математическому описанию.  [c.174]

Поверхность адсорбирует пыль, газы и другие вещества, образующиеся в результате протекающих в ходе эксплуатации изоляции физико-химических процессов в окружающей диэлектрик среде. Сильно загрязняется поверхность электроизоляционных конструкций (высоковольтных вводов, изоляторов и др.), работающих в загрязненной атмосфере промышленных и приморских районов. Образовавшийся на поверхности слой загрязнений имеет здесь такое небольшое электрическое сопротивление, что значение поверхностного тока утечки достаточно для нагрева поверхности до температур, больших 373 К (100 °С). При таком нагреве происходит вскипание воды на поверхности. Если этот процесс происходит в условиях увлажнения дождем, то перепады температур приводят к образованию микротрещин и механическому разрушению приповерхностного слоя изоляции. Не исключена и возможность воздействия различных агрессивных продуктов на приборы радиоэлектроники и автоматики при их использовании для регулирования работы электрических машин и аппаратов в устройствах энергетики, наземного, воздушного и водного транспорта. Поэтому в конструкциях приборов предусматриваются герметизация узлов с развитой поверхностью электроизоляционных промежутков, защита их поверхности специальными несмачиваемыми, незагрязняющими герметиками. Настройка и ремонт приборов, требующие разгерметизации, должны выполняться при условии, когда исключено всякое загрязнение и увлажнение электроизоляционных деталей. Элек-трокерамические электроизоляционные конструкции покрываются специальными грязестойкими глазурями, широко используется защита их поверхности гидрофобными кремыийорганическими лаками и герметиками. Покрытие из кремнийорганических соединений применяют для защиты поверхности электроизоляционных конструкций, изготовленных из стекла.  [c.148]

Явление теплового пробоя сводится к разогреву материала в электрическом поле до температур, соответствующих расплавлению и обугливанию. Электрическая прочность при тепловом пробое язляется характеристикой не только материала, но и изделия из него, тогда как электрическая прочность при электрическом пробое служит характеристикой самого материала. Пробивное напряжение, обусловленное нагревом диэлектрика, связано с частотой напряжения, условиями охлаждения, температурой окружающей среды. Кроме того, электротепловое пробивное напряжение зависит от нагревостойкости материала органические диэлектрики (например, полистирол) имеют более низкие значения электротеп-ловых пробивных напряжений, чем неорганические (кварц, керамика), при прочих равных условиях вследствие их малой нагрев -стойкости.  [c.69]


II воздушной среде объясняется близкими значениями температурнь х коэффициентов линейного расширения этих сплавов и их оксидных пленок. Поэтому растрескивание оксидных пленок имеет место только при резких сменах температуры тогда при последующих нагревах кислород воздуха будет проникать в образовавшиеся трещины и производить дальнейшее окисление сплава. Поэтому г[ри многократном кратковременном включении электронагревательного элемента из нихрома он может перегореть значигельно скорее, чем при непрерывной работе элемента при той же температуре.  [c.221]

Несомненно также, что термостойкость всех материалов уменьшается с ростом максимальной температуры цикла. Это можно объяснить не только возрастанием напряжений с повышением температуры, но и большей порчей материала при более высоких температурах, главным образом в поверхностных слоях. Замечено, что трещины термической усталости возникают не только в тех зонах и сечениях детали, которые подвергаются нагреву и охлаждению с наибольшей скоростью (например, в зонах, соответствующих границе действия потока горячих газов или, наоборот, охлаждающего потока), а также в зонах действия максимальных температур и поэтому, как правило, с наиболее окисленной поверхностью. Наблюдаемое значительное влияние среды на термостойкость подтверждает значение состояния поверхности так, долговечность турбинных лопаток при теплосме-нах 1050ч 600°С с вводом в газовой поток солей морской воды уменьшилась примерно в 10 раз по сравнению с результатами испытания в обычных условиях [81]. Отсюда становятся понятными причины положительного влияния на термостойкость защитных поверхностных слоев.  [c.162]

Влияние некоторых примесей в металлической ванне на процесс массопереноса в системе стекломасса — расплав металла иллюстрируют результаты измерений С (х) в пределах диффузионной зоны образцов серий III—VI. Образцы серии III получали нагревом слитков стекломассы в алундовых ограничительных кольцах в контакте с расплавом олова, содержавшим примесь никеля (1 мас.%). Системы нагревали в малоинерционной печи со скоростью примерно 80 град мин до температуры изотермической выдержки (900—1150° С) и после ее завершения (через 60 мин, в газовой среде очиш,енного аргона при давлении Ро = —10 атм) слиток охлаждали 6—8 мин до 500° С. Методика исследования распределения олова в образцах этой серии не отличалась от описанной выше. Содержание олова на сравнимых расстояниях от граничной поверхности образцов серии III (см. рис. 4, в) имеет промежуточное значение между данными, полученными соответственно на образцах серий I и II (см. рис. Зи4, а). Экспериментальные данные серии III не поддаются аппроксимации уравнением типа (1) в изученном интервале значений х поиски пригодных для этой цели формул продолжаются.  [c.216]

Коррозионно-активными составляющими золы твердых топлив являются соединения серы, щелочных металлов и хлора. Хотя их содержание в золе невелико, присутствие этих соединений в отложениях приводит к значительному увеличению скорости коррозии металлов по сравнению со скоростью коррозии в газовых средах, содержащих кислород. Поэтому, например, максимальную температуру поверхностей нагрева угольных котлов, изготовленных из перлитных сталей, ограничивают обычно значением 540—580 °С. Коррозионные повреждения при сгорании углей вызываются в основном сульфатами щелочных металлов, а при сгорании сланцев — хлоридами щелочных металлов. Обычно указывается на определяющее влияние двойных сульфатов Na3Fe(S04)g и КзРе(504)з в процессах коррозии сталей в золо-вых отложениях, образующихся при сгорании углей. Двойные сульфаты образуются из сульфатов щелочных металлов (возникающих в процессе горения), а также из SO3 и FejOg. На стальных поверхностях происходит восстановление двойных сульфатов  [c.223]

Недостатком конструкции дисковых тормозов типа Girling и Lo kheed является большое давление между тормозным диском и фрикционным материалом из-за относительно малой площади контакта. Поэтому в этих тормозах особое внимание обращается на подбор фрикционной пары (тормозной диск — фрикционная накладка), к которой предъявляются повышенные требования в отношении ее фрикционных качеств. Однако исследования [90], [95], [96] показали, что дисковые автомобильные тормоза способны совершать значительно большую работу торможения без превышения нагрева накладок сверх определенного предела, чем колодочный автомобильный тормоз соответствующих габаритов. Время, в течение которого достигается максимальная установившаяся температура при периодических торможениях, у дисковых, тормозов меньше, чем у колодочных, но и значения установившейся температуры несколько меньше, чем у колодочных тормозов, вследствие уменьшения коэффициента перекрытия поверхности трения тормозными накладками (см. фиг. 170 и 173). На фиг. 178 по оси абсцисс отложена относительная температура, т. е. отношение разности температуры металлического элемента и окружающей среды to) к средней температуре тормозной накладки (/J. Срок службы деталей дисковых тормозов превышает  [c.269]

Коэффициент трения накладок, уже обгоревших в процессе работы, значительно выше, чем у нового сырого материала. Поэтому, чтобы получить с первых же торможений высокое значение коэффициента трения, следует провести термообработку материала Ретинакс , заключающуюся в нагревании поверхности трения материала до 400—420° С (т. е. до начала выгорания легких составляющих фенолформальдегидной смолы) без свободного доступа окисляющей среды (например, в песке) до прекращения обильного дымовыделения [193]. Хотя Ретинакс при нагреве выше 450° С и не сгорает, но интенсивность его изнашивания резко возрастает. И все же в тормозных узлах с температурой 1000, 600 и 400° С износостойкость колодок из материала Ретинакс выше, чем износостойкость других видов фрикционных материалов, соответственно в 3, 6 и 10 раз. Прирабатываемость колодок из Ретинакса несколько затруднена вследствие его высокой износоустойчивости и изменения фрикционных свойств неработавшего материала под действием температуры (в связи с падением коэффициента трения). Поэтому в случаях применения указанного материала необходимо добиваться возможно более полного прилегания колодок к тормозному шкиву, протачивая для этого шкив и колодки. Для получения оптимальной прира-батываемости пары трения и получения максимальных начальных значений коэффициента трения рекомендуется [181] наносить на поверхность трения металлического элемента пары мягкий теплопроводный слой. В настоящее время исследовательские работы по изучению свойств Ретинакса широко ведутся в различных областях машиностроения и диапазон тормозных устройств с использованием этого материала непрерывно расширяется. Широкая экспериментальная проверка Ретинакса на тормозах шагающих экскаваторов, где температура нагрева достигает 360° С при давлении 7—12 кПсм и где за одно торможение выделяется до 660 ккал (работа торможения примерно равна 2,6-10 кГм), показала значительное преимущество его перед другими существующими типами фрикционных материалов как по износоустойчивости, так и по стабильности величины коэффициента трения. Поверхности трения шкивов тормозных устройств в процессе работы полировались без заметных царапин или задиров. Срок службы тормозных накладок из Ретинакса оказался в 10—13 раз выше, чем из других материалов. Хорошую работоспособность Ретинакс показал также в тормозах буровых лебедок [194], где температура достигает 600° С при давлении р = 6ч-10 кГ/см . В этих тормозах износостойкость материала Ретинакс оказалась в 6—7 раз выше, чем у асбокаучукового материала 6КХ-1. Срок службы материала Ретинакс в тормозах грузовых автомобилей оказался в 4—7 раз выше, чем у других асбофрикционных композиций. Проведенные лабораторные испытания Ретинакса в муфтах и тормозах кузнечно-прессового оборудования [192] (при р = 10ч-13 кГ/см 5.%  [c.536]

Для того чтобы показать влияние среды на процесс трения других материалов, на фиг. 320, 6 приведены зависимости коэффициента трения от температуры при трении металлокерамики МК-8 по чугуну ЧНМХ [170] в тех же средах. Во всех случаях коэффициент трения вначале уменьшается, а затем при нагреве среды до температуры 600° С стабилизируется. Наиболее высокий коэффициент трения получен при трении металлокерамики в среде гелия, что объясняется отсутствием образования окисных пленок, а при трении в среде кислорода вследствие интенсивного образования окисной пленки значение коэффициента трения имеет минимальное значение. При трении в воздушной среде значение коэффициента трения имеет среднее значение. Наиболее высокий износ обоих элементов пары происходит при трении в нейтральной среде из-за наличия непосредственного контакта материалов двух тел, сопровождающегося схватыванием. Износ в окислительной среде несколько больше, чем в воздушной, из-за более интенсивного образования окисной пленки. Из сравнения результатов экспериментов при трении в различных средах видно, что влияние среды проявляется совершенно различно при трении различных по своему составу и структуре фрикционных материалов.  [c.539]


В работе Болта [Л. 25, 84] использовалась установка, в которой пробы жидкости нагревались в ампулах из нержавеющей стали в течение 24 ч, в среде азота при давлении 22 бар. Степень разложения определялась по образованию газов и ВК продуктов. Для определения ВК продуктов использовался метод вакуумной дистилляции. Следует отметить, что полученные значения для скоростей газовыде-ления и образования ВК продуктов соответствуют средней скорости  [c.56]


Смотреть страницы где упоминается термин Значение среды нагрева : [c.72]    [c.162]    [c.329]    [c.324]    [c.621]    [c.61]    [c.201]    [c.419]    [c.23]    [c.168]    [c.279]    [c.113]    [c.70]    [c.539]   
Смотреть главы в:

Мастерство термиста  -> Значение среды нагрева



ПОИСК



Нагрев среда



© 2025 Mash-xxl.info Реклама на сайте