Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перемешивание турбулентное

Так как равняется дифференциалу импульса единицы массы жидкости, то I представляет собой эффективное расстояние, на которое в среднем переносится связанный с пульсацией импульс другими словами, I есть длина перемешивания турбулентных пульсаций.  [c.648]

Благодаря большой интенсивности хаотического перемешивания турбулентные течения обладают повышенной способностью к передаче теплоты, ускоренному распространению химических реакций (например, горения) и целым рядом других достоинств.  [c.110]


Экспериментальные исследования процесса перемешивания турбулентных свободных струй производились Д. Н. Ляховским  [c.49]

Область развитой Область перемешивания турбулентности  [c.305]

Согласно первоначальным представлениям допускалось, что частица ионита окружена прочно удерживаемой ею пленкой жидкости, остающейся неподвижной при любом перемешивании раствора. В настоящее время наличие такой неподвижной пленки отвергается и взамен нее вводится представление о зоне жидкости определенной толщины вокруг частицы ионита, в которой конвекция не оказывает влияния на распределение концентрации ионов и последняя обусловлена лишь диффузионными процессами. Эта зона, имеющая достаточно четкую границу с полностью перемешиваемым раствором, достигает толщины 10 —10 см в зависимости от характера перемешивания (турбулентное, ламинарное) толщина этой зоны изменяется. Для этой зоны сохранилось старое название пленка .  [c.194]

Перемешивание турбулентное (молярное) 551 Перенос суммарный количества движения в диффузионных потоках компонент (фаз) 74  [c.733]

Парадокс Даламбера 19. 33 Перемешивание турбулентное 627 Перепад давления 25. 49  [c.709]

При частоте вращения ротора, в 10—15 раз превышающей частоту вращения лопастных валов, в смешиваемой массе возникают центробежные усилия, создающие интенсивные потоки и быстрое перемешивание. Турбулентные смесители применяются для приготовления только подвижных смесей.  [c.82]

При достаточно большой скорости газов в сопле длина, характеризующая перемешивание турбулентного потока, не зависит от абсолютного значения скорости истечения и диаметра (калибра) сопла. При повышении скорости истечения возрастает средняя скорость в сечении струи и интенсивность турбулентного перемешивания, однако во столько же раз уменьшается время прохождения заданного расстояния /. Абсолютная длина струи, в которой перемешиваются неоднородные потоки, зависит от скорости истечения и увеличивается пропорционально диаметру (калибру) сопла. Перемешиванию струй способствует увеличение соотношения их скоростей вследствие увеличения трения между частицами и их вовлечения. Кроме того, перемешивание улучшается при увеличении толщины, ширины и угла встречи струй, а также уменьшении вязкости газов.  [c.27]

Соударение частиц происходит под действием физических факторов механического перемешивания, турбулентного движения потока и гравитационного осаждения. Темп соударений может быть увеличен под действием электрического и ультразвукового поля.  [c.29]


Благодаря большой интенсивности турбулентного перемешивания турбулентные течения обладают повышенной способностью к передаче кол-ва движения (и потому к повышенному силовому воздействию на обтекаемые ТВ. тела), передаче теплоты, ускоренному распространению хим. реакций (в частности, горения), способностью нести взвешенные ч-цы, рассеивать звуковые и эл.-магн. волны и создавать флуктуации их амплитуд и фаз, а в электропроводящей жидкости — генерировать флуктуирующее магн. поле и т. д.  [c.770]

Мелкомасштабные компоненты Т. (масштабы к-рых малы по сравнению с масштабами течения в целом) вносят суш ественный вклад в ускорения жидких ч-ц и в определяемую ими способность турбулентного потока нести взвешенные ч-цы, в относит, рассеяние ч-ц и дробление капель в потоке, перемешивание турбулентных жидкостей, генерацию магн. поля в электропроводящей жидкости, спектр неоднородностей электронной плотности  [c.771]

Особенностью свободной затопленной струи при турбулентном режиме течения является ее турбулентное перемешивание с окружающей неподвижной средой. По мере продвижения вперед струя увлекает за собой все большую массу неподвижной среды, которая тормозит течение на границе струи. В результате подторможенные частицы струи вместе с увлеченными ими частицами окружающей среды (присоединенной массой) образуют турбулентный пограничный слой, толщина которого по мере удаления от начального сечения непрерывно возрастает. При этом происходит непрерывное сужение центрального ядра струи (ядра постоянных скоростей) до полного ее исчезновения, а пограничный слой распространяется на все сечение струи. Таким образом, размывание струи сопровождается не только ее расширением, но и уменьшением скорости по оси (рис. 1.46).  [c.49]

Растекание струи до бесконечности возможно только при установке решетки в неограниченном пространстве (рис. 3.4, а). Если решетка находится в трубе (канале) конечных размеров (рис. 3.4, б), структура потока за ней будет иная. Так, например, в случае центрального (фронтального) набегания жидкости на решетку в виде узкой струи, последняя, растекаясь радиально и достигая за решеткой стенок трубы (канала), неизбежно изменит свое направление на 90° и дальше будет перемещаться вдоль стенок в виде кольцевой струи. При этом в центральной части сечения за решеткой поступательная скорость будет равна нулю. В условиях реальной (вязкой) среды, вследствие турбулентного перемешивания, жидкость, подходя к стенкам трубы (канала), будет увлекать за собой неподвижную часть жидкости из центральной части сечения (рис. 3.4, б). На освободившееся место из более удаленных от решетки сечений будут поступать другие массы жидкости, и, таким образом, в центральной части сечений за решеткой возникнут обратные токи, а профиль скорости за решеткой по сравнению с начальным профилем струи (до решетки, рис. 3.5, а) будет иметь перевернутую форму (см. рис. 3.4, б, а также 3.5, б).  [c.81]

Если на пути потока (рис. 3.6, б) установить решетку, то струя, набегая на нее со стороны задней стенки аппарата, начнет по ней растекаться в сторону передней стенки (входного отверстия). Так как степень искривления линий тока при этом будет увеличиваться вместе с ростом коэффициента сопротивления решетки р, при определенном значении этого коэффициента вся жидкость за плоской решеткой будет перетекать к передней стенке аппарата и от нее изменит свое направление на 90° в сторону общего движения. Вследствие турбулентного перемешивания с окружающей средой струя за решеткой на всем пути будет подсасывать определенную часть неподвижной жидкости, и в области, прилегающей к задней стенке, образуются обратные токи. Таким образом, профиль скорости за плоской решеткой при боковом входе в аппарат получится перевернутым , т. е. таким, при котором максимальные скорости за решеткой будут соответствовать области обратных токов, образующихся свободной струей при входе (рис. 3.6, а п б).  [c.85]

Особый интерес представляет распределение скоростей по средней вертикальной плоскости аппарата при боковом вводе потока без последующего выравнивания его с помощью каких-либо распределительных устройств (рис. 6.9). В одном случае поток отводился в направлении, противоположном вводу (рис. 6.9, а), а в другом — по направлению ввода потока в аппарат (рис. 6.9, б). В обоих случаях поток после входа в аппарат отклоняется к стенке, противоположной входу, и узкой струей с большими скоростями (ш/йУь- 8) направляется вверх. Струя постепенно размывается за счет турбулентного перемешивания, так что сечение ее увеличивается, а максимальные скорости уменьшаются.  [c.148]


Второй вид потока называется турбулентным, в нем непрерывно происходит перемешивание всех слоев жидкости. Каждая частица потока, перемещаясь вдоль канала с некоторой скоростью, совершает различные движения перпендикулярно стенкам канала. В связи с этим поток представляет собой беспорядочную массу хаотически движущихся частиц. Чем больше образуется пульсаций, завихрений, тем больше турбулентность потока. При переходе ламинарного движения в турбулентное сопротивление от трения в канале возрастает.  [c.402]

В случае турбулентного режима движения на границе фаз перенос вещества осуществляется не только вследствие молекулярной диффузии, но и вследствие интенсивного перемешивания отдельных фаз. Такую диффузию называют конвективной, или молярной.  [c.500]

Эффект интенсификации турбулентного перемешивания реализуется при вполне определенном пороговом уровне звукового давления в акустическом поле, усиливаясь с возрастанием уровня звукового давления до наступления насыщения, после чего дальнейшее увеличение интенсивности воздействующего звука не приводит к усилению эффекта.  [c.128]

Эффект ослабления турбулентного перемешивания в струях реализуется при вполне определенном диапазоне значений уровня звукового давления и достигает максимума в середине этого диапазона. При этом увеличение интенсивности воздействующего звука выше некоторой величины и может сопровождаться изменением знака воздействия.  [c.128]

Величина х — опытная постоянная и по рекомендациям [206] ее можно принять равной 0,03. Тогда после подстановки в (4.30) и вычислений получим для камеры энергоразделения вихревых труб оценку средней по радиусу интенсивности свободной турбулентности е = 25,8%. Оценку интенсивности пристенной турбулентности можно получить, выразив турбулентное напряжение через длину пути перемешивания и динамическую скорость [2061  [c.176]

При течении жидкостей внутри проницаемых матриц теплообменных элементов перенос теплоты в жидкости осуществляется не только за счет молекулярной теплопроводности, но и в результате турбулентного перемешивания. Ускорение или замедление потока и задержка частиц в застойных зонах могут дополнительно генерировать или подавлять турбулентность потока.  [c.36]

Если фазы находятся в относительном движении, характер поверхностной конвекции становится турбулентным. Это выражается в том, что сокращения и растяжения поверхности раздела фаз происходят гораздо сильнее. Поток вещества, обусловленный такими изменениями поверхностного натяжения, интенсифицирует перенос целевого компонента через межфазную границу и вызывает последующее сильное его перемешивание внутри каждой фазы. Данное явление было названо поверхностной турбулентностью [5]. При больших значениях градиента концентрации целевого компонента у поверхности раздела фаз и значениях градиента поверхностного натяжения, близких к критическим, поверхностная турбулентность может иметь место вдоль всей межфазной границы при малых значениях градиента концентрации целевого компонента поверхностная турбулентность может наблюдаться лишь на части поверхности раздела.  [c.8]

Использование более сложных моделей при теоретическом анализе газожидкостных течений требует привлечения информации о распределении скорости течения фаз по сечению канала. Такие модели еще соответствуют квазиодномерному описанию течения, так как допускают различие локальных скоростей только в основном направлении движения. Любое движение поперек канала либо не принимается во внимание, либо учитывается путем введения дополнительных параметров. Например, турбулентное перемешивание фаз учитывается путем введения коэффициента турбу-  [c.185]

Поскольку в явлениях турбулентного переноса эффекты молекулярной вязкости и теплопроводности обычно пренебрежимо малы в сравнении с явлениями вихревого перемешивания (исключая случаи очень больших градиентов скорости и температуры), пульсации температуры в основном связаны с вихревым перемешиванием элементов жидкости, при котором сохраняются их первоначальные температуры. Если элементы жидкости имеют различные температуры, то необходимо ввести средний температурный градиент в потоке с осредненными свойствами. Можно предполагать поэтому, что статистические свойства пульсации температуры зависят от двух факторов 1) от среднего температурного градиента в поле потока и 2) от характера поля скоростей. Далее на простом примере будет показано, какую роль играют средний температурный градиент для пульсаций температуры и соотношения между соответствующими статистическими свойствами для переноса количества движения и тепла. Такой подход был впервые использован Коренном 1130] при изучении теплообмена в условиях изотропной турбулентности. Рассмотрим изотропный и однородный турбулентный поток с постоянным средним температурным градиентом вдоль оси у, перпендикулярной направлению основного потока — оси х. Необходимые допущения для описания турбулентного поля течения сводятся в данном случае к следующим  [c.83]

Большинство исследований массообмена в системе жидкость — твердая фаза выполнено на реакционных аппаратах с перемешиванием. Полученные результаты не применимы к ус.ловиям течения в трубах. Однако проведенные измерения позволяют выявить влияние турбулентности на течение в трубах. Авторы работы [344] использовали представление о двойной пленке при рассмотрении процесса растворения бензойной кислоты в разбавленной гидроокиси натрия. Эта же система, дополнительно содержавшая гранулы и дробленые частицы при степени измельчения до 1 мм, исследовалась в работе [511]. По результатам исследования частиц диаметром от 1 до 15 мм получено следующее соотношение [32]  [c.180]


Коэффициенты турбулентной диффузии на много порядков больше, чем коэффициенты молекулярной диффузии. Поэтому, если только мы не рассматриваем диффузию около твердой новерхности (где турбулентность гасится), обычно допустимо вообще пренебречь молекулярной диффузией. Турбулентные аналоги чисел Прандтля и Шмидта определяются соответственно как отношения кинематической турбулентной вязкости к коэффициентам турбулентной температуропроводности или турбулентной диффузии. Их численные величины основываются на измерениях профилей скорости, темиературы и концентрации в процессах турбулентного перемешивания. Турбулентные числа Прандтля и Шмидта приблизительно одинаковы как для жидкостей, так и для газов. Их численная величина — около 0,7 это показывает, что при турбулентном перемешивапии теплота и вещество переносятся с одинаковой скоростью и что эта скорость больше, чем скорость турбулентного переноса количества движения [Л. 11].  [c.454]

Наличие жидких металлической и шлаковой фаз является важнейшим, но недостаточным условием нормального проведения физико-химических процессов регулирования содержания примесей в металле. Дополнительным обязательным условием является интенсивное перемешивание металла и шлака, которое обеспечивает требуемые скорости массо- и теплоПЕЕрШса. Это перемешивание обычно обеспечивается выделением газов, образующихся при окислении углерода. Если бы этого перемешивания (турбулентной диффузии) не было, то в неподвижном металле и шлаке процессы в результате обычной (молекулярной) диффузии протекали бы с очень малыми скоростями, не приемлемыми для сталеплавильных процессов.  [c.33]

Смешение компонентов, находящихся в одинаковом газо- или парообразном состоянии, происходит в результате молекулярной диффузии, т. е. взаимного проникания молекул каждого компонента в другой через поверхность раздела неподвижных объемов или ламинарных потоков компонейтов. Однако процесс молекулярной диффузии протекает относительно медленно и не может обеспечить образование однородной смеси в короткий промежуток времени, который отводится для смесеобразования в рабочем цикле. Более быстрое и совершенное смесеобразование возможно при перемешивании турбулентных потоков колшонеатов, при котором в дополнение к молекулярной диффузии возникает турбулентная диффузия. В этом случае происходит обмен уже не отдельными молекулами, а некоторыми объемами компонентов размер этих объемов зависит от масштаба турбулент-  [c.132]

В п. 1,22 было указано, что для турбулентного течения характерно перемешивание жидкости, нульсан,нн скоростей и давлений. Если с помощью особо чувствительного прибора-самописца иаме-  [c.82]

В качестве примера рассмотрим движение частицы в вертикальном канале, включая и участок разгона, но для случая автомодельного движения ( / = onst). Участок автомодельности наступает при высоких числах ReT, что соответствует режиму развитой турбулентности. Поэтому можно воспользоваться итерационной формулой для амплитуды крупномасштабных пульсаций сплошного потока, полученной в [Л. 284], так как именно эти пульсации играют главную роль для перемещения (и перемешивания) частиц  [c.107]

Здесь первый член условно характеризует термическое сопротивление ядра потока, определяемое турбулентным перемешиванием, а второй — пограничного слоя, в основном определямое молекулярным переносом, для которого характерно e < v, толщина (l- i i)< <1, и 1 Так как принято, что W r=l, то 1-fZ — отношение водяного числа всего дисперсного потока к водяному числу несущей среды — в пределах турбулентного ядра — величина неизменная. Тогда решение (6-49) можно провести так же, как и для однородного потока. Согласно [Л. 179] при Re>10 и константе х= = 0,4 для однородного потока  [c.206]

Различают два режима течения жидкости — ламинарный и турбулентный. Ламинарный режим течения является устойчивым, струйки жидкости движутся отдельно, не смешиваясь одна с другой. Турбулентный режим характеризуется неустойчивостью течения, бe пopяJl,oчным перемещением конечных масс жидкости и их перемешиванием.  [c.19]

Результаты измерений свидетельствуют о том, что чем больше неравномерность поля скоростей на входе в диффузор, тем более вытянутыми получаются профили скорости на начальном участке. Вместе с тем (см. рис. 1.14) в последующих сечениях диффузора увеличение неравномерности скоростей на входе (увеличение относительной длины проставки) ускоряет выравнивание поперечного распределения скоростей по длине диффузора профили скорости при х > 4 и /у = 20 и соответственно х > 8 и 0 = 1 более пологие (да сшах меньше), чем при = 0. Более ускоренное выравнивание потока объясняется, как и выше, интенсификацией турбулентного перемешивания при наличии проставки перед диффузором.  [c.26]

В дальнейшем, по мере продвижения вдоль электрофильтра это иоле скоэостей выравнивается вследствие естественного турбулентного перемешивания и в конечно. сечении первого электрополя оно получается достаточно равномерны. .  [c.247]

При турбулентном течении в тепловом пограничном слое перенос тепла в нанравлении к стенке в основном обусловлен турбулентным перемешиванием жидкости. Интенсивность такого переноса тепла существешю выше интенсивности переноса тепла теплопроводностью. Однако непосредственно у стенки, в ламинарном подслое, перенос тепла к стенке осуществляется обычной теплопроводностью.  [c.405]

Во втором случае, при воздействии на турбулентную струю высокочастотного звукового сигнала (Sh = 2- 5), происходит ослабление интенсивности турбулентного перемешивания в приосе-вой части начального участка струи уменьшаются пульсашюн-ные скорости, происходит 1 ельчение периодических вихрей, слой смешения становится тоньше и увеличивается длина начального участка, уменьшается угол раскрытия и эжекционная способность струи как на начальном, так и на основном участках струи. Указанное явление было обнаружено при числах Рейнольдса Re = 1(Р 5 1(И и малых значениях числа Маха.  [c.128]

За расчетную схему примем наиболее общий случай течения в вихревой трубе с дополнительным потоком (рис. 4.7). В этом случае режим работы обычной разделительной вихревой трубы представляет собой предельный при О- Используем понятие элементарного объема вращающегося газа dQ. = V nrdr. Условие осевой симметрии обеспечивает отсутствие фадиентов в направлении угловой координаты ф. В сформированном потоке вихревой трубы радиальные скорости пренебрежимо малы. В процессе построения аналитической расчетной цепочки можно использовать принцип суперпозиции, т. е. независимость законов движения по нормальным друг к другу осям координат. Процесс энергообмена в сопловом сечении считаем заверщенным. Определим предельно возможные по разделению энергетические уровни потенциального и вынужденного вихрей. Длина пути перемешивания и фадиент давления определяют предельный эффект подофева приосевого турбулентного моля при его переходе на более высокую радиальную позицию. При этом делается допущение о переходе в сечении, перпендикулярном оси. Осевой снос моля не учитывают. Вязкость и теплопроводность проявляют себя, если присутствуют фадиенты скорости и температуры. Поэтому при формировании свободного вихря вязкость будем учитывать, анализируя процесс затухания окружного момента  [c.191]

Щец Дм- Турбулентное течение. Процессы ндува и перемешивания Пер. с англ. М. Мир, 1984.  [c.410]


Известно, например, что при турбулентном режиме течения сплошной фазы скорость переноса вещества возрастает в силу интенсивного перемешивания фаз. Режимы течения газожидкостной смеси по характеру движения фаз можно условно разделить на ламинарно-ламинарный, когда жидкость и газ движутся ла-минарно, ламинарно-турбулентный, когда газ движется ла.ми-нарно, а жидкость — турбулентно, турбулентно-турбулентный, когда обе фазы движутся турбулентно и турбулентно-ламинарный, когда газ движется турбулентно, а жидкость — ламинарно.  [c.7]

Последний член в левой части уравнения (4.39) выражает перенос тепла, связанный с турбулентным перемешиванием твердых частиц. Для очень малых частиц, как в рассматриваемом здесь случае, можно ожидать, что (vpTp) (и Т р).  [c.171]


Смотреть страницы где упоминается термин Перемешивание турбулентное : [c.412]    [c.202]    [c.670]    [c.233]    [c.212]    [c.771]    [c.209]    [c.585]    [c.172]    [c.223]   
Гидроаэромеханика (2000) -- [ c.163 , c.165 , c.181 ]

Теория пограничного слоя (1974) -- [ c.627 ]



ПОИСК



Коэффициент турбулентного перемешивани

Перемешивание

Перемешивание турбулентное (молярное)

Слой турбулентного перемешивания

Турбулентная вязкость. Гипотеза Прандтля о длине пути перемешивания

Турбулентность, длина перемешивания

Турбулентность, длина перемешивания температуры частиц

Турбулентность, длина перемешивания частицы

Турбулентность, длина перемешивания частотам



© 2025 Mash-xxl.info Реклама на сайте