Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Более общие методы решения задач теории упругости

БОЛЕЕ ОБЩИЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ТЕОРИИ УПРУГОСТИ  [c.243]

БОЛЕЕ ОБЩИЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ТЕОРИИ УПРУГОСТИ [ГЛ. IX В качестве примера рассмотрим функцию  [c.252]

БОЛЕЕ ОБЩИЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ТЕОРИИ УПРУГОСТИ [ГЛ. IX Производные  [c.260]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]


Изложим метод решения задач теории упругости в рядах, непосредственно реализуемый для областей, ограниченных одной окружностью или двумя концентрическими окружностями. Его распространение на более общие конфигурации требует использования конформного отображения.  [c.402]

Наиболее полезное решение при этом относится к случаю, когда на ограниченной полоске в бесконечной среде действуют постоянные усилия = Рх ty — Ру В этой главе мы дадим такое решение и используем его при построении метода граничных элементов для решения общих смешанных краевых задач теории упругости. Этот метод подобен методу, описанному в 3.4 для нагружения поверхности упругой полуплоскости, но теперь он не столь очевиден. Он также более гибок, чем метод, описанный ранее, и позволит нам рассматривать тела произвольной формы.  [c.52]

В то же время известны общие универсальные математические методы, позволяющие, в частности, находить решения некоторых классов задач теории упругости. Справедливость их применения в процессе получения решения базируется на существовании специальных неравенств. Естественно, что методически более оправданным является обстоятельное построение этих неравенств для упрощенных задач (обыкновенные дифференциальные уравнения, уравнения Лапласа), рассматриваемых (вместе с общей теорией) в математической главе. С учетом этого при изложении задач теории упругости оказалось целесообразным отметить лишь специфику построения соответствующих неравенств, ограничившись при этом простейшими областями (ввиду сложности построения оценок в общем случае). Такой подход реализован, например, при рассмотрении вариационных методов.  [c.7]

Как показано в [65], подход, основанный на применении интегралов типа Коши, может быть использован также при решении краевых задач линеаризованной плоской теории упругости для многосвязных областей. Для таких задач может быть применен метод, известный в литературе [41, 63, 65, 135] как метод последовательных приближений Шварца. Этот метод представляет собой итерационный процесс, на каждом шаге которого решается граничная задача для односвязной области, ограниченной одним из контуров, составляющих границу Г данной многосвязной области, причем от шага к шагу номер контура меняется. В более общем виде (без привязки к методу Колосова-Мусхелишвили) метод Шварца рассмотрен в приложении IV. Сходимость этого метода для плоских задач теории упругости доказана [85.  [c.80]


Одним из необходимых этапов расчета на прочность элементов конструкций с позиций механики разрушения является определение напряжений и смещений в телах с трещинами. К настоящему времени разными методами решено довольно много различных задач об упругом равновесии тел с трещинами. Особого внимания заслуживают общие методы решения таких задач. Их значение еще более возросло в последние годы в связи с разработкой различных автоматизированных программно-информационных систем, предназначенных для проведения расчетных исследований прочности элементов конструкций. Одним из наиболее универсальных и удобных для реализации на ЭВМ является метод сингулярных интегральных уравнений, нашедший особенно широкое применение при решении двухмерных задач теории упругости для тел с трещинами.  [c.3]

Дюамель занимался также теорией колебаний упругих тел. Свободные колебания струны и стержней постоянного поперечного сечения получили к тому времени уже достаточное освещение. Дюамель перешел к более сложным случаям. Он поставил, например, задачу о колебаниях струны с присоединенными к ней сосредоточенными массами и не только дал полное решение этой задачи, но и провел большое количество опытов, результаты которых хорошо согласовались с теорией ). Он дал общий метод исследования вынужденных колебаний упругих тел ). Применив принцип наложения, он показал, что перемещения, произведенные переменной силой, могут быть получены в виде некоторого интеграла (см. стр. 277). Этот метод был затем использован Сен-Вена-  [c.294]

Рассмотрим задачу о полубесконечном упругом теле г>0 предположим, что на граничной плоскости г=0 заданы отвечающие условиям осевой симметрии либо нормальные Ог (или касательные т) напряжения, либо компоненты перемещений и и V. Эта группа задач теории упругости исследовалась общими методами, основанными на теории потенциальных функций. Естественно, что в данной книге не представляется возможным дать даже краткий обзор общих методов решения этих задач ). Мы ограничиваемся изложением лишь одного специального способа построения решений, в котором используются некоторые частные интегралы уравнений (7.9) и (7.10). При этом мы основываемся на более общем методе, описанном в цитированной в примечании книге Римана—Вебера, используя важную группу решении вида 1 г)Я[г). Одна из комбинаций интегралов для и, удовлетворяющих уравнению (7.9), имеет вид  [c.289]

С. м. к. обычно включают более углубленное рассмотрение соответствующих отделов теории упругости и некоторых общих методов исследования деформации упругих систем, применяемых при изучении общей части С. м. к. или при решении новых задач, выдвигаемых практикой. Главнейшие из таких методов—-  [c.96]

В гл. 5 рассматриваются некоторые общие свойства упругих и пластических стержневых систем. Существенно заметить, что вариационные принципы теории упругости, ассоциированный закон течения, свойство выпуклости поверхности нагружения для пластической системы доказываются здесь совершенно элементарно. Все эти теоремы будут сформулированы и доказаны впоследствии при более общих предположениях. Автору представляется по опыту его педагогической работы, что иллюстрация общих принципов на простейших примерах, где эти общие принципы совершенно очевидны, способствует лучшему их пониманию и усвоению. Гл. 6 посвящена теории колебаний, которая должна занять подобающее место как во втузовских, так и в университетских программах. Кроме собственно задач о колебаниях здесь излагается метод характеристик для решения задач о продольных волнах в стержнях. Этот метод настолько прост И ясен, что им можно пользоваться и его легко понять, не прослушав общего курса дифференциальных уравнений математи-  [c.12]

В 17.34 показано, что для сферических изотропных однородных куполов постоянной толщины с плоским жестко заделанным краем в безмомент-ной теорнн можно использовать почти без изменения наиболее эффективный метод решения плоских задач теорнн упругости, разработанный для круговых областей. Переносятся на безмоментную теорию сферических оболочек и некоторые более общие методы решения плоских задач, относящиеся к некруговым и многосвязным областям. Они соответствуют случаям, когда край  [c.260]


Основные работы, посвященные решению задач о наращивании методами теории упругости, приведены в [5241. На основе теории упругоползучего тела в работе [494] исследовано напряженно-деформированное состояние в однородных телах при их наращивании. В более общей постановке эта задача рассматривалась в [171]. Установлению определяющих соотношений и исследованию краевых задач вязкопластических течений "твердых тел посвящены работы [208, 209]. Уравнениям деформирования не вполне упругих и вязкопластических тел посвящены работы [217—220]. Задача термоползучести для неоднородно-стареющего тела исследована в [94, 95]. Плоская задача вязкоупругости для неоднородной среды, а также влияние старения материала на напряженно-деформированное состояние около отверстий исследовались в [429, 430, 474].  [c.27]

Метод аппроксимаций, предложенный в [211], позволяет получить точное решение задачи теории вязкоупругости, если решение соответствующей задачи теории упругости можно представить в виде рациональной функции констант материала. Этот метод применим также для построения приближенного решения и в болев общем случае, когда функция упругих модулей трансцен-дентна, или задача теории упругости решается численно.  [c.289]

Для тел более общей формы описанная здесь в общих чертах процедура решения приводит к зависимостям между разностью перемещений и на двух концах каждой нормальной линии и разностью перемещений v на двух концах каждого волокна. В рассмотренном выше простом примере необходимо было найти значения двух разностей, и это можно было сделать с помощью простых алгебраических действий. Некоторые нетривиальные задачи, в которых разности перемещений нельзя -определить чисто алгебраическим путем, решены Ингландом [7]. Существование решений для тел достаточно произвольной формы было доказано в работе Пипкина и Санчеса [25] при помощи метода, который одновременно может быть использован для построения приближенных решений. Это частично подтверждает высказанное выше предположение о том, что краевые условия корректно поставленной задачи теории упругости приводят также к корректно поставленным задачам теории идеальных композитов.  [c.297]

Решение указанных задач сводится в простейших случаях к совокупности задач Дирихле или смешанных задач Келдыша — Седова теории аналитических функций комплексного переменного. Процедура нахождения решения оказывается принципиально не более сложной, чем для аналогичных задач статики и стационарной динамики. Вначале выводятся общие представления решения через аналитические функции комплексного переменного для произвольного индекса автомодельности и дано описание общего метода решения. Затем метод демонстрируется на некоторых конкретных задачах из указанного класса. Рассмотрение ограничено плоскими задачами для однородного и изотропного тел, однако метод нетрудно обобщить на случай анизотропного кусочно-однородного тела, когда верхняя и нижняя полуплоскости имеют различные упругие постоянные.  [c.113]

Введенные выше потенциалы простого слоя, двойного слоя и их производные, как показано в 1, удовлетворяют тождественно дифференциальным уравнениям теории упругости внутри тела при отсутствии объемных сил. Частное решение, соответствующее действию объемных сил, выражается объемным потенциалом с плотностью, равной объемной силе. В связи с этим решение тон или иной краевой задачи теории упругости можно попытаться искать в виде суммы одного или нескольких граничных потенциалов и объемного потенциала. Плотности граничных потенциалов должны содержать достаточно неизвестных, чтобы можно было удовлетворить граничные условия. Для нахождения этих неизвестных строятся интегральные уравнения на границе тела —граничные интегральные уравнения (ГИУ). Если при заданных краевых условиях доказано существование решения построенного интегрального уравнения, то тем самым обоснована использованная формула представления решения. Вопрос обоснования формулы представления решения не возникает, если в качестве ее используется формула Сомильяны, справедливая дл любого регулярного, т. е. принадлежащего классу ( (Q) n (Q)) , поля перемещений, а также для более общих классов перемещений, для которых имеет место формула Бетти. Поскольку плотности потенциалов простого и двойного слоя, входящих в формулу Сомильяны, имеют прямой физический смысл, то соответствующую формулировку метода граничных элементов (МГЭ) называют прямой формулировкой МГЭ. В противоположность этому формулировку МГЭ, использующую другие формулы представления, называют непрямой формулировкой МГЭ.  [c.62]

Предлагаемая книга содержит популярное изложение геометрической теории устойчивости упругих оболочек, основанной на некоторых результатах теории конечных и бесконечно малых изгибаний поверхностей. Наряду с известными результатами, содержащимися в монографии автора Геометрические методы в нелинейной теории упругих оболочек , в книгу вошли результаты исследований, выполненных в последние годы. В частности, здесь содержится полное решенйе задачи об устойчивости сферических оболочек ПОД внешним давлением без каких-либо предположений о характере выпучивания. В рамках принятой математической модели явления дано полное исследование потери устойчивости общей строко выпуклой оболочки, защемленной по краю, под внешним давлением. Рассмотрен вопрос о потере устойчивости цилиндрических оболочек при осевом сжатии и оценено влияние различных факторов на критическую нагрузку. Рассмотрены и другие вопросы. В отличие от упомянутой выше монографии здесь мы ограничиваемся сравнительно небольшим числом классических задач о потере устойчивости оболочек, но исследуем их более полно.  [c.4]


С начала XX в. роль русских учёных в области прочности и колебаний становится ещё более выдающейся. Труды акад. А. Н. Крылова и проф. И. Г. Бубнова по статическому и вибрационному расчёту корабельных корпусов и теории деформации пластинок положили начало отечественным работам по строительной механике корабля и других конструкций. Эти труды нашли впоследствии развитие в работах проф. П. Ф. Папковича и проф. Ю. А. Шиманского. Теория упругости, статика пластинок и йлит, теория пластичности блестяще развивается советскими учёными. В трудах акад. Б. Г. Галёркина разработан эффективный вариационный метод решения вопросов упругого равновесия, дано общее решение" задачи объёмного напряжённого состояния и ряда других. Проф. Г. В. Колосовым разрешается ряд задач теории упругости с использова-  [c.1]

Решение плоской задачи теории упругости зависит от двух координат и может быть выражено через две произвольные (с точки зрения выполнения уравнений равновесия и условий неразрывности) двухмерные гармонические функции, определяющиеся путем подчинения решения двум краевым условиям на плоском граничном контуре. То обстоятельство, что ортогональные преобразования координат на плоскости и теория двухмерных гармонических функций тесно связаны с теорией функций комплексного переменного, позволило разработать общий метод решения плоской задачи, основанный на аппарате теории аналитических функций (Г. В. Колосов [10], Н. И. Мусхелишвили [20] и его школа). Этот путь в принципе позволяет подойти к решению любой плоской задачи, но наиболее эффективен для односвязных и (в меньшей мере) для двухсвязных областей. Основная идея, которой при этом руководствуются, состоит в отображении рассматриваемой области на одну из канонических областей (на полуплоскость, круг единичного радиуса или круговое кольцо) с последующим использованием аппарата интегралов типа Коши для нахождения двух неизвестных функций по заданному краевому условию. Если ограничиться только односвязными областями (каковые по существу главным образом и рассматриваются [20], [27]), то можно обойтись и без аппарата интегралов типа Коши, оперируя лишь самыми элементарными представлениями теории аналитических фунщий. В нашей книге, носящей общий характер, мы даем только этот наиболее простой и в то же время достаточно эффективный способ, отсылая читателя за более полным и общим изло-  [c.292]


Смотреть страницы где упоминается термин Более общие методы решения задач теории упругости : [c.324]    [c.144]    [c.596]    [c.164]    [c.262]    [c.7]   
Смотреть главы в:

Теория упругости Изд4  -> Более общие методы решения задач теории упругости



ПОИСК



Задача и метод

Задача общая (задача

Задача упругости

Задачи и методы их решения

Задачи теории упругости

К упругих решений

МН (от 100 до 1000 тс и более)

Метод решения задач теории упругости

Метод теории решений

Метод упругих решений

Общий метод

Общий метод решения

Решение задачи упругости

Решение общей задачи

Решения метод

Теории Методы общие

Теория Метод сил

Теория Методы решения задач

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте