Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства при значительных пластических деформациях и при разрушении

СВОЙСТВА ПРИ ЗНАЧИТЕЛЬНЫХ ПЛАСТИЧЕСКИХ ДЕФОРМАЦИЯХ И ПРИ РАЗРУШЕНИИ  [c.22]

Экспериментальные исследования показывают, что хрупкие материалы разрушаются при незначительных пластических деформациях. Если же материал обладает пластичностью, то разрушению предшествуют значительные пластические деформации и оно сопровождается более сложными явлениями, чем при разрушении хрупкого материала, т. е. поведение материала под нагрузкой зависит от его свойств и вида напряженного состояния.  [c.93]


Сопротивление разрушению при различных типах напряженных состояний определяется механическими свойствами и условиями прочности в зависимости от возможного характера разрушения. При этом следует различать два основных вида разрушения I) хрупкое, протекающее без значительных пластических деформаций, и 2) вязкое, сопровождающееся пластическими деформациями. Один и тот же материал в зависимости от типа напряженного состояния (степени его объемности) и условий деформирования (температура, скорость нагружения, агрессивная среда) может давать хрупкое п вязкое разрушение (211, [40].  [c.437]

Сопротивление разрушению при различных типах напряженных состояний определяется механическими свойствами и условиями прочности в зависимости от возможного характера разрушения. При этом следует различать два основных вида разрушения 1) хрупкое, протекающее без значительных пластических деформаций, и 2) вязкое, сопровождающееся пластическими дефор маниями. Один и тот же материал в зави-  [c.483]

Причиной значительных пластических деформаций и разрушений деталей машин, работающих при высоких температурах, как, например, лопаток и направляющих аппаратов газовых турбин, оболочек реактивных двигателей и др., является ползучесть металлов. Это свойство подобно свойству текучести воскового стержня, к которому подвешен груз в зависимости от температуры такой стержень будет удлиняться с большей или меньшей скоростью при неизменной нагрузке и, наконец, разорвется.  [c.9]

Среди других химических элементов металлы выделяются целым рядом отличительных физических свойств. Прежде всего, их можно подвергать значительным пластическим деформациям как при высоких температурах, так и при температурах, значительно более низких, чем точка их плавления. Монокристаллы элементов железа, алюминия, меди, цинка и других металлов в форме цилиндрических или призматических образцов способны, как оказалось, приобретать перед разрушением под растягивающей нагрузкой при обычных температурах чрезвычайно большие остаточные удлинения.  [c.11]

Теория, описывающая влияние на анизотропию свойств сталей направления волокон, базируется на представлении о решающей роли в разрушении сталей различных внутренних дефектов, например пор или включений, ориентированных при значительных пластических деформациях. При этом предполагается, что при механических испытаниях или нагружении при эксплуатации поведение материала определяется концентрацией напряжений и деформаций около включений, возможностью растрескивания частиц или отрывом их от матрицы.  [c.10]


Износостойкость — весьма сложное свойство, зависит от состояния и качеств инструментальной стали, а также от состояния сопряженной пары и условий эксплуатации инструментов. Износ сопровождается не только физическим разрушением рабочего слоя и потерей массы металла, но и пластическим деформированием рабочей кромки и, следовательно, изменением ее состояния, а также размеров и формы. Износостойкость инструментальных сталей тем выше, чем больше сопротивление пластической деформации в условиях контактного приложения нагрузки. При таком напряженном состоянии твердость в определенной степени характеризует износостойкость, которая возрастает с повышением твердости. Поскольку поверхностный слой инструментов может значительно разогреваться, важно, чтобы высокое сопротивление деформации и твердость не снижались при нагреве. Поэтому износостойкость инструментальных сталей характеризуют высокие твердость и теплостойкость.  [c.1186]

В ряду углерод—азот—кислород азот наиболее эффективный упрочнитель ниобия. Твердость электронно-лучевого ниобия при легировании его азотом (в пределах твердого раствора) увеличивается вдвое больше [115], а величина напряжения течения при 2% пластической деформации в 1,5 раза больше [116], чем при легировании кислородом. Скорость увеличения параметра кристаллической решетки ниобия при легировании его азотом значительно больше, чем при легировании кислородом [114]. Показатели кратковременной прочности (a,j, 00,2) и длительной прочности (скорость ползучести, время до разрушения) возрастают по мере увеличения содержания азота в твердом растворе ниобия [117—121]. Уровень прочностных свойств при твердорастворном легировании ниобия азотом достигает значительной величины и иногда превосходит уровень прочности двухфазных сплавов.  [c.212]

Для других материалов кривая напряжение — деформация имеет, вообще говоря, совсем другой вид. Например, эта кривая для чугуна показана на рис. 229, б. Для чугуна почти нет зоны пластических деформаций при растяжении. По достижении предела упругости имеет место почти незаметная зона текучести, и сразу начинается разрушение образца. Материалы, имеющие диаграмму а (е), подобную диаграмме чугуна, называются хрупкими материалами в отличие от вязких материалов, которые имеют, подобно стали, довольно значительную зону пластических деформаций. Это различие в свойствах вязких и хрупких материалов очень важно знать при практическом применении того или иного материала. Если в какой-то машине при ее работе напряжения в некоторых местах и будут переходить предел упругости, то это не поведет к разрушению машины, сделанной из вязкого материала, машина же, сделанная ив хрупкого материала, разрушится.  [c.290]

Диаграммы истинных напряжений. Из изложенного следует, что для проверки прочности и определения деформаций растянутых и сжатых стержней при допускаемых нагрузках достаточно определить условные напряжения. Однако при исследовании процесса деформации стержней вплоть до разрушения и при изучении свойств материала использование условных напряжений совершенно неприемлемо. Диаграмма условных напряжений при сколько-нибудь значительных пластических деформациях отражает процесс неточно, а с момента начала сосредоточенной деформации (образование шейки) вообще теряет смысл. В самом деле, удлинения и поперечные сужения образца при сосредоточенной деформации практически происходят только вследствие деформаций шейки, т. е. на незначительной.  [c.53]

В общем случае сила, действующая на какой-либо определенной площадке, не перпендикулярна этой площадке, а направлена под некоторым углом к ней. Эту силу, как всякий вектор, можно разложить на две составляющие нормальную силу, вызывающую нормальное напряжение, действующее перпендикулярно площадке, и касательную силу, вызывающую касательное напряжение, действующее в плоскости площадки (рис. 1.1). Механические свойства материалов в значительной мере определяются удельными величинами этих составляющих. При этом одни процессы (например, пластическая деформация, ползучесть, однократное разрушение путем среза, начальные стадии усталостного разрушения и др.) связаны главным образом с касательными, а другие (например, однократное разрушение путем отрыва, длительная жаропрочность, конечные стадии усталостного разрушения), главным образом с нормальными растягивающими напряжениями. Существовавшее мнение о том, что пластическая деформация и срез определяются только касательными, а разрушение путем отрыва — только нормальными напряжениями, не полностью оправдалось. Тем не менее разделение полного напряжения на касательную и нормальную составляющие для анализа процессов нарушения прочности целесообразно для многих случаев.  [c.27]


Переход от отрыва к срезу, а равно и от хрупкого разрушения к вязкому, может быть осуществлён как изменением вида напряжённого состояния, так и изменением свойств материала путём внешних (изменение температуры, скорости деформирования) и внутренних (изменение состава и структуры) факторов. При жёстких способах нагружения более вероятным является хрупкое разрушение путём отрыва, при мягких —разрушение путём среза после довольно значительной пластической деформации. Этим, в частности, объясняется склонность к хрупкому разрушению надрезанных образцов даже сравнительно пластичных материалов и, наоборот, склонность  [c.789]

В зависимости от природы трущихся тел и внешних условий трения пластические деформации и, обусловленные ими искажения решетки могут способствовать развитию некоторых вторичных процессов. Изменяется химическая активность металлов, возрастает скорость диффузии, облегчаются условия схватывания металлов при совместном пластическом деформировании й стимулируется распад пересыщенных твердых растворов. Значительная часть работы, затрачиваемой на деформацию внешних слоев, преобразуется в теплоту трения. Изменение структуры и свойств металлов в сочетании с рядом вторичных процессов нередко приводят и к изменению характера разрушения соприкасающихся поверхностей при заданных условиях нагружения.  [c.70]

Большая теплопроводность меди обусловливает большую зону термического влияния, что в сочетании с высоким термическим коэффициентом линейного расширения меди, который в 1,5 раза больше коэффициента линейного расширения для стали, приводит к получению сравнительно больших тепловых деформаций и при последующем охлаждении сварных швов — к созданию значительных остаточных напряжений. Наличие последних, а также снижение пластических свойств меди при высоких температурах может привести к разрушению сварных соединений в процессе их охлаждения.  [c.43]

ВЫСОКИХ температурах), то в каждом цикле развиваются значительные пластические деформации, пластичность материала исчерпывается и это обстоятельство определяет момент разрушения. При высоком пределе текучести вообще может не быть пластической составляющей, однако термоусталостное разрушение происходит и разрушение определяется прочностными свойствами материала.  [c.90]

При оценке влияния дефектов на работоспособность материала путем механических испытаний следует учитывать сильную зависимость этого влияния от ориентировки дефектов и их распределения, а также то, что различные условия разрушения — скорость нагружения, податливость нагружающей системы, наличие концентратора напряжений и т. д. — могут значительно изменить вид излома и замаскировать некоторые дефектные свойства материала. Так, в частности, особенности строения изломов, связанные с неоднородностью материала и разной способностью к пластической деформации неоднородных зон, т. е. изломы шиферные, черные , расслоения в изломах лучше выявляются в достаточно пластичном состоянии материала, чем в хрупком.  [c.185]

Статьи, заключенные в данный сборник, содержат результаты исследований, выполненных за последние годы в области изучения микроструктурных особенностей деформационных процессов и разрушения в поликристаллических металлических материалах (в том числе композиционных) в условиях теплового и механического воздействия. При проведении исследований использованы методы качественной и количественной тепловой микроскопии в сочетании с другими физическими методами. В ряде работ содержатся сведения о методиках и аппаратуре, применяемых для получения прямых экспериментальных данных об изменениях микростроения и уровня механических свойств изучаемых материалов. Значительное внимание в сборнике уделено изучению микроструктурных особенностей развития пластической деформации сталей и сплавов, биметаллических композиций и сварных соединений при тепловом воздействии в условиях статического и циклического нагружения.  [c.4]

Поведение материала под нагрузкой зависит от его свойств и вида напряженного состояния. В одних случаях вплоть до разрушения деформация оказывается более или менее точно пропорциональной напряжению разрушение наступает при отсутствии пластических дес рмаций (рис. 25). В других — после упругой деформации развиваются значительные пластические деформации, заканчивающиеся разрушением рис. 16 и 18) непрерывно растущая пластическая деформация может и не приводить к разрушению рис. 24).  [c.127]

В отличие от металлических материалов при развитии магистральной трещины в углепластиках не образуется зоны пластической деформации ему предшествует образование зоны с ухудшенными свойствами. Поэтому для анализа явления усталостного разрушения углепластиков нельзя использовать те подходы, которые правомерны для металлических материалов. В общем случае макроскопические явления усталостного разрушения весьма схожи, однако в микромеханизме усталостного разрушения углепластиков и металлических материалов наблюдается значительное различие. Вследствие этого необходимо достаточно внимательно подходить к проведению испытаний на усталость и к анализу полученных данных.  [c.141]

В нашей работе не ставится задача подробного рассмотрения процессов пластического вязкого течения, поскольку эксплуатация конструкционных полимерных материалов осуществляется, как правило, вне пределов температурной области вязкого течения, хотя в отдельных случаях при эксплуатации может иметь место наложение упругой, высокоэластической деформаций и вязкого течения, характеризуемого значительными остаточными деформациями. В зависимости от температуры и скорости приложения нагрузки механизм разрушения у одного и того же полимера может быть различным. Это в значительной степени усложняет количественную интерпретацию экспериментальных результатов по долговременной прочности, а также затрудняет прогнозирование прочностных свойств полимерных материалов.  [c.120]


Для обычных металлов и сплавов при разрушении микрообъемов характерна значительная неоднородность в строении и свойствах. Отдельные кристаллы сравнительно легко деформируются и разрушаются, проявляя при этом очень низкую прочность. Другие, более прочные кристаллы оказывают высокое сопротивление пластической деформации они удерживаются в поверхностном слое до тех пор, пока металл вокруг них не будет полностью разрушен, после чего они выпадают. Такое неравномерное (избирательное) разрушение металла является очень важной особенностью процесса гидроэрозии.  [c.95]

Необходимость расчета на сопротивление хрупкому разрушению определяется существованием хрупких или квазихрупких состояний у элементов конструкций. Основным фактором, определяющим возникновение таких состояний для сплавов на основе железа в связи с присущим им свойством хладноломкости, является температура. На рис. 3.1 показаны области основных типов сопротивления разрушению в зависимости от температуры. При температуре, превышающей первую критическую Гкрь для сплавов, обладающих хладноломкостью, а также для материалов (сплавы на основе магния, алюминия, титана), не обладающих хладноломкостью, в диапазоне рабочей температуры имеют место вязкие состояния. В этом случае предельные состояния наступают лишь после значительной пластической деформации и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих вязких трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность в этих условиях рассматривают на основе представлений о предельных упругопластических состояниях, анализируемых на основе методов сопротивления материалов и теории пластичности. Позднее возникновение и медленное прорастание трещин при оценке несущей способности, как правило, не учитываются.  [c.60]

Необходимость расчета на сопротивление хрупкому разрушению связана с тем, что в условиях работы элементы конструкций могут находиться в хрупких или квазихрупких состояниях (17, 28, 29). Основным фактором возникновения таких состояний для сплавов на основе железа в связи с присущими им свойствами хладноломкости является температура. На схеме (рис. 6) показаны области основных типов сопротивления разрушению в зависимости от температуры. В области температур, превышающих первую критическую Ткр1 для сплавов, обладающих хладноломкостью, а также для материалов, не обладающих хладноломкостью в диапазоне температур работы конструкций (сплавы на основе магния, алюминия, титана), имеют место вязкие состояния. В этом случае предельные состояния наступают после возникновения значительных пластических деформаций и существенного перераспределения полей деформаций и напряжений в элементах конструкций. Скорость распространения возникающих трещин в этих состояниях оказывается низкой. Вопросы несущей способности и расчета на прочность при таких состояниях рассмотрены в гл. 2.  [c.246]

При пластической деформации выступов фактическая площадь контакта почти не зависит от микрогеометрии поверхности, определяется пластическими свойствами материала и нагрузкой. Упрочнение материала влияет на формирование фактической площади контакта, которая при этом зависит от нагрузки в степени. В случае упругой деформации шероховатостей на фактическую площадь контакта существенно влияют геометрические характеристики шероховатости и упругие свойства материала. Площадь в этом случае пропорциональна нагрузке в степени 0,7-0,9. В узлах трения механизмов и машин, приборов, оборудования часто встречающимися видами износа являются адгезионный, абразивный, коррозионно-механический, усталостный. При воздействии потока жидкости, газа возникает эрозионное изнашивание. Наиболее интенсивно изнашивание протекает в процессе заедания. Поверхности трения при малых колебательных пере-меще1шях подвержены фреттинг-коррозии. В условиях кавитационных явлений возникает кавитационное изнашивание. Механизм физико-химических связей при адгезионном взаимодействии и интенсивность поверхностного разрушения непосредственно зависят от величины площади фактического контакта [4, 8—12]. Значительный рост интенсивности изнашивания наблюдается при достижении контактными нормальными напряжениями величины предела текучести материала. Энергия адгезии увеличивается при физически чистом контакте материалов и совпадающих по структуре материалов. Гладкость поверхностей способствует увеличению адге-  [c.158]

Влияние вакансий на свойства при высоких темцературах прежде всего связано с той ролью, какую они играют в диффузионных процессах (см. гл. П1). Отметим здесь, что вакансии могут облегчать преодоление препятствий при движении дислокаций в плоскости скольжения. При этом уменьшается сопротивление ползучести. Этот эффект проявляется при достаточно большой плотности вакансий. Вакансии играют значительную роль в разрушении металла в процессе ползучести. Разрушение при высокой температуре металлов, пластичных при комнатной температуре, часто происходит при небольшой пластической деформации. При этом в процессе деформации возникают и постепенно развиваются мельчайшие трещинки и полости. Высказывалось предположение, что такие поры образуются вследствие коагуляции вакансий, избыточную концентрацию которых вызывает пластическая деформация (подробнее см. гл. IX).  [c.71]

Процесс разрушения конструкций с трещинами является двустадийным, Первая стадия характеризуется стабильным ростом трещин до достижения ими некоторого критического значения. Вторая стадия — лавинообразный рост трещин, приводящий к разрушению конструкции. Соотношение продолжительности этих стадий определяется свойствами конструкционного материала. Для пластичных (вязких) материалов стабильный рост трещины продолжается вплоть до полного разрушения конструкции, при этом в окрестности трещины наблюдаются значительные пластические деформации. Для высокопрочных сталей пластические деформации в зоне трещины минимальны, и ее стабильное развитие прекращается при достижении критического значения.  [c.213]

При температурах ниже нуля сопротивление малым пластическим деформациям значительно возрастает с понижением температуры. Пластические свойства и ударная вязкость резко уменьшаются. Модули упругости (Е и О) при этом несколько повышаются. Следует знать, что при температурах ниже 0°, а иногда и при положительной температуре несколько выше О, металлы обнаруживают так называемую хладноломкость. Хладноломкости подвержены не все металлы, а преимущественно такие, которые имеют кристаллическое строение центрированного куба (латунь. Нчелезо и др.) и кристаллизуются в гексагональной системе (например цинк и др.). Металлы, имеющие кристаллическое строение куба с центрированными гранями (алюминий, медь, никель, латунь и др.), хладноломкости не проявляют. Хладноломкость стали во многом зависит от ее химического состава и степени наклепа. Особенно вредно отражается на хладноломкости содержание фосфора. В наклепанном состоянии сталь также значительно подвержена хладноломкости. С явлением хладноломкости необходимо считаться особенно тогда, когда детали машин и конструкций работают при низких температурах. При работе конструкции в условиях высоких температур и при длительном приложении нагрузки разрушение конструкции может вызываться ползучестью материала. В таких случаях необходимо выбирать жаропрочный материал, обладающий достаточно высоким пределом ползучести при заданных температуре и условиях нагружения.  [c.79]


Мы привели пример, когда весьма малая пластическая деформация, не учитываемая законом Гука, приводит к весьма существенному изменению напряжённого состояния тела, вследствие продолжительности действия нагрузки. Можно привести аналогичный по результатам пример изменения напряжённого состояния тела и даже его разрушения, вследствие большого числа циклов периодически меняющейся во времени нагрузки. Такое йроявление пластических свойств называется усталостью. Затухание свободных упругих колебаний тел, связанное с внутренним трением или с явлением гистерезиса, также является результатом неточности закона Гука и проявления пластических свойств материала. Но при средней продолжительности времени действия нагрузок, средних скоростях деформаций, среднем числе циклов колебаний и нормальной температуре твёрдые тела с достаточной точностью можно считать упругими до тех пор, пока возникающие в них напряжения и деформации не превосходят определённых значений. В области, где напряжения и деформации выше этих пределов, твёрдые тела получают ббльшую или меньшую пластическую деформацию можно добиться значительного роста пластических деформаций от нагрузки, прибегая либо к чисто механическим воздействиям (давление), либо к нагреванию. Поэтому следует говорить не столько об упругом или пластическом теле, сколько об упругом и пластическом состояниях твёрдого тела. Эти понятия в отличие от общепринятых, например, в отличие от приведённого выше определения пластичности, являются вполне определёнными и строгими.  [c.8]

Анализ случаев поломок деталей машин свидетельствует о том, что большинство поломок связано с явлением так называемой усталости материалов. Явление усталости металлов заключается в разрушении деталей машин вследствие возникновения в них многократно изменяющихся переменных напряжений, значительно меньших, чем предел прочности или даже предел текучести материала. Опасность этого явления заключается в том, что деталь, выполненная из пластичного металла и нагруженная до напряжений, казалось бы, неопасных, внезапно разрушается без появления остаточных деформаций, которые сигнализировали бы о надвигающейся катастрофе. Долгое время существовало мнение, что при работе детали в условиях циклически меняющихся напряжений, происходит изменение в кристаллическом строении металла. Это мнение основывалось на том, что материал с достаточными пластическими свойствами при длительной работе в условиях переменных напря-  [c.327]

В. Н. Кащеев ш М. М. Тененбаум считают, что процесс изнашивания при трении в абразивной массе определяется многими взаимо-влняющими факторами [187, 191—194]. Для процесса характерна малая площадь контакта абразивной частицы с рабочей поверхностью, что вызывает значительные напряжения, величины которых зависят от формы и механических свойств частицы, а также от прижимающей силы. При этом возможны два случая если возникающие напряжения превышают предел упругости, но ниже предела текучести, то происходит усталостное разрушение если уровень напряжений выше предела текучести, то изнашивание сопровождается пластической деформацией микрообъемов и происходит последефор-мационное разрушение [187, 193]. Иногда отмечается нроцесс шаржирования [191, 192, 194], при котором за счет уменьшения шероховатости поверхности износ резко снижается. Его величина может даже принимать отрицательное значение, т. е. размеры и масса образца будут увеличиваться. Причинами шаржирования, по-видимо-му, являются неизбеншое ударное действие острых абразивных частиц, их дробление и некоторые процессы адгезионного характера. Эффект шаржирования зависит от скорости перемещения абразивной массы и соотношения твердостей абразива и образца. Вероятно, он может наблюдаться только у мягких, пластичных покрытий.  [c.112]

Исследование фрактограмм однократного разрушения дает возможность определить его последовательность. В первую очередь возникают микронадрывы вокруг более резких структурных концентраторов, какими часто являются частицы избыточной фазы. По мере развития пластической деформации поры вокруг этих частиц растут, что приводит к образованию крупноямочного рельефа. Рост пор ослабляет материал и приводит к увеличению эффективных напряжений вокруг более мелких частиц в перемычке (шейке) между крупными ямками. Такими частицами могут быть выделяющиеся в процессе распада твердого раствора упрочняющие фазы. Внутренние перемычки-шейки разрушаются при этом с образованием более мелкодисперсного рельефа. Таким образом, размер первичных ямок зависит от свойств окружающего частицу материала, размеров и расположения более мелких частиц. Эти частицы определяют окончательный долом, а начало разрушения и время развития процесса разрушения в значительной степени определяются частицами избыточной фазы (или другими резкими структурными концентраторами).  [c.25]

Аварийные повреждения магистральных нефтепроводов внешне характеризуются большим разнообразием (по основному металлу, по заводскому шву, по монтажным швам, в различных точках трубы и тройниковых соединений). Также различны и сроки эксплуатации до возникновения аварий от нескольких месяцев до десятка лет. Однако пояти все нарушения имеют общие признаки. Если исключить случаи явных дефектов и брака, то можно считать, что большая часть аварий происходит без видимых причин и часто при давлениях ниже рабочих. Отсутствуют пластические макродеформации по периметру трубы и у кромок в местах максимального раскрытия трещин в центральной части разрыва, а разрушения часто имеют очаговый характер. Механические свойства металла, в том числе твердость и ударная вязкость, в очаговых зонах (длиной порядка 150—250 мм) остаются прежними, и охрупчивания металла из-за потери свойств (старение, наводоро-живание) не происходит. Это значит, что если бы разрушение было чисто механическим и вызывалось однократной (статической) нагрузкой, то должны были бы произойти значительные пластические макродеформации, чего на самом деле нет. Такие остаточные деформации с утонением стенки трубы проходят на остальном протяжении разрыва в зоне механического дорыва косым срезом, распространяющегося в обе стороны от очага разрушения. Таким образом, четко различаются две зоны — зона зарождения (очага) разрушения и зона разрыва (рис. 97).  [c.222]

На рис. 89 приведены результаты моделирования на типовые динамические воздействия. Из результатов моделирования следует, что системы с выключающимися связями обладают определенной чувствительностью к изменению спектрального состава динамических воздействий и к дополнительным переходным режимам, вызываемым выключением связей. Когда спектр динамического воздействия является одноэкстремальной функцией несущей частоты, существует достаточно широкий диапазон частот, в пределах которого указанными явлениями можно пренебречь. Это объясняется тем, что система является грубой по Андронову (структурно устойчивой) к изменению параметров и обладает свойством адаптации (в области динамической устойчивости [3]) к заданному классу динамических воздействий [64]. Если же соответствующий спектр является многоэкстремальной функцией (что особенно часто встречается на практике и, в частности, при обработке реальных акселерограмм сильных землетрясений), то динамические системы данного класса обладают значительно большей чувствительностью к скачкообразному изменению параметров (структуры). Во многих случаях это приводит к существенному сужению области или к потере динамической устойчивости. В этом случае целесообразно проводить исследование динамических систем с переменной структурой, учитывающих оба вида дислокаций (комбинированные СПС) хрупкое разрушение и пластические деформации материала. Излагаемая методика анализа позволяет непосредственно перейти к исследованию подобных систем.  [c.309]

Среднее значение статического коэффициента сухого трения для пары титан—титан [136] равно 0,61, а динамического — 0,47— 0,49 (при скорости 1 см/с). Относительно тонкая естественная окисная пленка на титане легко разрушается при трении за счет высоких удельных нагрузок в точках контакта (на неровностях поверхности), благодаря значительно более высокой пластичности титана, чем у окисной пленки. На локальных участках контакта двух поверхностей происходит явление схватывания. Этому способствует и ряд других свойств титана повышенная упругая деформация из-за более низкого (например, чем у стали) модуля упругости, более низкая теплопроводность и др. Так как титан легко наклепывается при пластической деформации, связи, воз-никающ,ие в местах контакта (холодная сварка), на наклепанном металле более прочны, чем прочность основного металла. Кроме того, благодаря выделению теплоты трущаяся поверхность металла обогащается газами из окружающей среды, что также повышает прочность поверхностного слоя. Поэтому разрушение образовавшихся связей обычно происходит в глубине основного металла и повреждения на трущихся поверхностях из титана носят так называемый глубинный характер со значительным наволакиванием и вырывами металла.  [c.182]


Прежде чем перейти к рассмотрению процессов, происходящих на металлических поверхностях трения и приводящих к изменению их начального состояния, отметим, что хрупкость и пластичность твердого тела не являются свойствами, присущими ему независимо от напряженного состояния. При одних напряженных состояниях тело может быть пластичным, а при других — полухрупким или хрупким. Так, при всестороннем равномерном растяжении пластические деформации не развиваются, и материал пребывает в хрупком состоянии. При равномерном всестороннем сжатии большинство твердых тел может воспринимать без разрушения огромные нагрузки. В случае неравномерного всестороннего сжатия в зависимости от главных напряжений тела могут находиться в пластичном, хрупком или переходном состоянии. Б. Д. Грозин показал, что при определенных условиях объемного сжатия даже такие обычно хрупкие материалы, как чугун и закаленная сталь, обладают значительной пластичностью.  [c.96]

Исследования показали, что сопротивление аустенитных сталей микроударному разрушению в значительной степени определяется природой легирующих элементов и содержанием углерода [12, 47, 54]. Разные легируюш,ие элементы при различном их содержании в стали могут образовывать аустенит с различными свойствами, которые прежде всего проявляются в степени его стабильности и склонности к упрочнению при деформировании микрообъемов стали. Ранее показано, что в условиях микроудар-ного воздействия в процессе пластической деформации микрообъемов аустенита происходит его частичный распад с образованием мартенситной фазы. В этом случае значительно повышается сопротивление стали микроударному разрушению. Однако для некоторых аустенитных сталей это явление проявляется слабо. Стали со стабильной структурой аустенита разрушаются быстрее, чем стали с нестабильной структурой. Устойчивость аустенита зависит от состава стали и природы легирующих элементов. Например, никелевый аустенит более устойчив, чем марганцевый.  [c.206]


Смотреть страницы где упоминается термин Свойства при значительных пластических деформациях и при разрушении : [c.12]    [c.190]    [c.115]    [c.37]    [c.422]    [c.168]    [c.141]    [c.79]    [c.138]    [c.12]    [c.67]    [c.86]    [c.101]   
Смотреть главы в:

Механические свойства металлов Издание 3  -> Свойства при значительных пластических деформациях и при разрушении



ПОИСК



Деформация пластическая

Деформация разрушения

Пластическая деформаци

Пластическая деформация и разрушение

Пластические свойства

Разрушение пластическое

Разрушение свойства



© 2025 Mash-xxl.info Реклама на сайте