Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкционные материалы (свойства)

На практике в технике основная часть явлений не может быть объяснена с помощью классических моделей. Возникают новые конструкционные материалы, свойства которых не могут быть описаны с помощью лишь уравнений линейной упругости и даже нелинейной. Многие случаи непредвиденного разрушения не укладываются в рамки классических теорий. Экспериментальные данные в основном скудны. Что до физических теорий, они позволяют механику удовлетворить свое любопытство, но малопригодны для построения уравнений состояния. Эти законы и теории в основном базируются все же на феноменологических концепциях.  [c.68]


Чтобы оценить влияние температуры на работоспособность автомобилей в холодном макроклиматическом районе эксплуатации, рассматривают условия использования автомобилей в более узких климатических районах. При этом оценивается воздействие комплекса климатических факторов рассматриваемого района на стойкость конструкционных материалов свойства топлива, масел и эксплуатационных жидкостей организацию системы эксплуатации автомобиля в целом. Таким образом, при правильной организации эксплуатации автомобилей можно с большей полнотой учесть специфику того или иного района.  [c.6]

Стеклопластики являются конструкционным материалом, свойства которого можно широко варьировать в заданных пределах. Они представляют собой искусственные слоистые материалы, получаемые из связующего и стеклянного наполнителя. В качестве связующего используют в основном синтетические смолы (ненасыщенные полиэфирные, эпоксидные, фенолоформальдегидные и т. д.), иногда термопласты. В качестве наполнителя — стекловолокнистые материалы (стеклянные волокна, нити, жгуты, маты и т. д.). Стеклянное волокно, обладая большой прочностью, выполняет в стеклопластиках функцию металла в железобетоне, воспринимая основные нагрузки при работе изделия. Связующее (смола) обеспечивает связь отдельных волокон в общую систему и способствует равномерному распределению нагрузки.  [c.169]

В первом томе содержится информация, составляющая фундамент механики твердого деформируемого тела. Подробно обсуждаются свойства конструкционных материалов, анализ напряженно-деформированного состояния в точке сплошной среды и физические уравнения в реологическом аспекте. Уделено значительное внимание проблеме предельного состояния материала в локальной области. За-  [c.35]

Наибольший практический интерес представляют свойства тугоплавких металлов при высоких температурах. Однако для характеристики этих металлов как конструкционных материалов имеет значение изменение механических свойств в широком диапазоне температур. Характерные температурные зависимости предела прочности при растяжении и пластических характеристик различных тугоплавких металлов в рекристаллизован-иом состоянии приведены на рис. 384. Как и следовало ожидать,  [c.525]

Описание технологических процессов основано па их физической сущности и предваряется сведениями о строении и свойствах конструкционных материалов. Комплекс этих знаний обеспечивает универсальный подход к изучению технологии. В соответствии с про-I  [c.3]


Многие из них образуют отдельные классы или группы, обладающие близкими физико-химическими свойствами. Задача анализа отработавших газов осложняется наличием в них паров воды, дисперсных частиц сажи, соединений свинца и фосфора, окислов железа и других элементов, входящих в состав конструкционных материалов, топлив и масел. Кроме того, автомобильному двигателю свойственны переменные режимы работы, большой диапазон отклонений токсических характеристик в зависимости от индивидуальных особенностей и технического состояния.  [c.20]

В книге изложены основные вопросы теории коррозии и материаловедения, описаны свойства конструкционных материалов, применяемых для изготовления аппаратов [) установок в химической промышленности н других отраслях народного хозяйства.  [c.2]

В химическом машиностроении наряду с легированными сталями находят широкое применение в качестве конструкционных материалов различные цветные металлы и сплавы, использование которых определяется как особенностями технологических процессов, так и благоприятными физико-механическими и антикоррозионными свойствами этих материалов.  [c.245]

Современные достижения науки и техники в области высокомолекулярных соединений позволяют решать задачи получения конструкционных материалов с заданными свойствами и  [c.392]

Достаточная удельная прочность, хорошие антикоррозионные свойства и значительная жаропрочность (по сравнению со сплавами на основе А1 и М ) характеризуют сплавы на основе Т1 как перспективные конструкционные материалы.  [c.224]

Изучение влияния реакторного облучения на кратковременную и длительную прочность и пластичность, а также на другие механические свойства конструкционных материалов при различных видах силового и теплового воздействий, установление уравнений состояния различных материалов и получение критериев их прочности, учитывающих эффект влияния радиационного облучения.  [c.663]

Эпоксидные полимеры. ..... высокопрочные конструкционные материалы. На их основе изготовляют компаунды со свойствами, изменяющимися в широких пределах в зависимости от степени наполнения. Эффективно их применение в качестве изоляционных и антифрикционных  [c.41]

Последовательное наступление научно-технической революции неразрывно связано с непрерывным совершенствованием машиностроения — основы технического перевооружения всех отраслей народного хозяйства. Инженерная техническая деятельность на основе научной мысли расширяет и обновляет номенклатуру конструкционных материалов, внедряет эффективные методы повышения их прочностных свойств. Появляются новые материалы на основе металлических порошков, порошков-сплавов. Порошковая металлургия не только приводит к замене дефицитных черных и цветных металлов более дешевыми материалами, она позволяет получить совершенно новые материалы — материалы века , которые невозможно получить традиционным путем. Кроме того, изготовление изделий из порошков — практически безотходное производство. Другое направление получения дешевых конструкционных материалов состоит в применении пластмасс, новых покрытий и т. п. Тончайшая пленка из порошковых смесей на поверхности детали, образуемая плазменным напылением, повышает надежность сопрягаемых и трущихся друг о друга деталей машин, защищает их от коррозии и существенно увеличивает их износостойкость.  [c.4]

Перечислите основные допущения относительно свойств конструкционных материалов, которые принимаются в сопротивлении материалов.  [c.31]

Во-вторых, вероятностные модели отказов (за редким исключением) абсолютно НС затрагивают физико-механические аспекты процессов, предшествующие и сопровождающие явления отказа и временные изменения свойств конструкционных материалов. В результате этого становится невозможным установление первопричин и анализ ситуаций, приводящих к отказу, и как след-  [c.129]

Для конструкционных материалов диссипация подводимой энергии позволяет противостоять явлению разрушения, которое аналогично явлению смерти для биологических систем. Подвод энергии к конструкционным материалам осуществляется в процессе их эксплуатации в виде различных нагрузок сжатия, растяжения, изгиба, кручения, циклических нагрузок, совместного действия всех вышеперечисленных факторов. Эта энергия называется энергией деформации. Она носит потенциальный характер и приводит к деформации - изменению первоначальной формы и размеров образца материала. При этом также изменяются его прочностные свойства.  [c.104]


Весь смысл существования конструкционных материалов заключается в том, чтобы создавать из них различные машины и конструкции, способные сопротивляться внешним нагрузкам Опора моста должна выдерживать сжимающую нагрузку, трос подъемного крана - растягивающую, мостик для прыжков в воду - нагрузку изгиба и не должен сломаться под ногами спортсмена. Все материалы рано или поздно теряют свои первоначальные свойства, разрушаются и приходят в негодность. Поэтому все дальнейшее изложение будет иметь целы объяснить читателю почему, с какой скоростью и по каким механизмам происходит их разрушение. Такое понимание необходимо для того, чтобы можно было при проектировании создавать идеи надежных конструкций, в прочности которых мы были бы уверены. При этом необходимо учитывать тонкие механизмы разрушения реальных материалов.  [c.104]

Так как в процессе создания и эксплуатации конструкционных материалов дефекты кристаллической структуры возникают неизбежно как результат диссипации вносимой в материал энергии (см. п. 4.2), то границы представляют собой не фиксированную, а постоянно изменяющуюся фазу, в которой происходят процессы постоянного накопления дефектов и перестройки дефектной структуры материала. Это осуществляется посредством структурных фазовых переходов второго рода. Барьер энергии активации фазовых переходов преодолевается при нагружении материала в процессе эксплуатации. Кинетика фазовых переходов из одного состояния в другое и определяет свойства границ и всего материала в целом.  [c.126]

Механические свойства некоторых конструкционных материалов при растяжении  [c.221]

Композиционные конструкционные материалы (например, биметаллы, стеклопластики и др.) образуются объемным сочетанием химически разнородных компонентов с четкой границей раздела. Такие материалы обладают свойствами, которыми не обладает каждый из компонентов, взятый в отдельности. Композиционные материалы могут обладать весьма высокими механическими, диэлектрическими, жаропрочными и другими свойствами.  [c.15]

Упругость, модуль упругости, пластичность, закон разгрузки и закон упрочнения. При проведении опытов с растяжением образцов выявляются общие свойства конструкционных материалов — свойства упругости и пластичности. На рис. 4.2 показаны типичные результаты опытов на растяжение. Если напряженио ст не превышает определенной величины — предела упругости Оу, то зависимость между напряжением а и деформацией е оказывается линейной  [c.71]

Разработка структурных моделей особенно важна для современных композиционных материалов. По сравнению с традиционными конструкционными материалами свойства композитов мало изучены. Каждый год разрабатывают сотни новых композитов, очень часто композит как материал создают вместе с конструкцией. Испытания композитов на малых образцах недостаточно информативны. Из-за побочных эффектов, к которым многие композиты более чувствительны, чем традиционные материалы, они ведут себя в образце иначе, чем в конструкции. Перенос результатов испытаний образцов на натурные конструкции затруднен из-за четко выраженного, но трудно предсказуемого масштабного эффекта. Применительно к задачам прогнозирования ресурса возникают дополнительные трудности из-за необходимости экстра,поляции результатов испытаний на малой базе.  [c.121]

Жаропрочные сплавы в условиях эксплуатации претерпевают сложное воздействие температуры и нагрузок. В связй с этим для них наряду с обычными для всех конструкционных материалов свойствами — Ов, ао,2, б, "ф, Ан обязательно определяют и специфические, из которых два являются основными — предел ползучести и предел длительной прочности. Первый — величина напряжения которая вызывает заданную величину деформации или заданную скорость деформации за некоторое принятое время при данной температуре второй — наибольшее напряжение, которое выдерживает материал, не разрушаясь при заданной температуре, продолжительности испытаний и рабочей атмосфере. Обеспечение жаропрочных свойств, определяемых этими характеристиками, предусматривает создание в сплавах особо устойчивого структурного состояния, гарантируюш его их длительную надежную работу в условиях эксплуатации. Такое состояние связано с наиболее полной реализацией основных факторов, влияющих на жаропрочность, и прежде всего наличием упрочняющих когерентных у -выделений,. а также образованием относительно крупнозернистой структуры. На практике это достигается стандартной термообработкой, которая включает высокотемпературный отжиг в однофазной -у-области, закалку и последующее старение. В результате такой обработки сплавы имеют величину зерен, соответствующую 1—3-му баллу по стандартной шкале, и содержат большое число дисперсных частиц 7 -фазы.  [c.249]

Кроме высоких коррозионных свойств, снлавы хастеллой обладают и высокими механическими свойствами (аа>90 кгс/мм ,. СТо,2>40 кгс/мм ) при высокой пластичности, что делает их ценным конструкционным материалом. Ешс более высокие механические свойства (Ствг 120 кгс/мм ) можно получить термической обработкой, аналогично той, которую применяют для ппкелсвых жаропрочных сплавов закалка+старение при 800°С, Однако ма -симал1,ное упрочнение соответствует минимуму коррозионной стойкости, поэтому упрочняющая термическая обработка рекомендуется не вссгда.  [c.498]

Как н для других конструкционных материалов, основное требование к криогенным материалам — механическая проч-iio Tb. Однако специфичностью условий работы является широкий интервал температур от комнатной до жидкого гелия, в котором существенно меняются свойства.  [c.499]

В последнее время значительно возрос объем ирнмеиенпя так называемых компактных конструкционных материалов, получаемых из порон1Ков самых различных металлов н сплавов. В связи с высокой плотностью механические свойства их практически не снижаются, а отдельные эксплуатационные свойства значительно увеличиваются. Например, спеченный алюминиевый порошок (САП) в своем составе содержит до 15% оксидов алюминия, которые в виде топкой пленки покрывают зерна алюминия и образуют в спеченном материале непрерывный каркас. Такая структура придает материалу высокую теплостойкость. Этот материал может длительное время работать при температурах до 600 °С. САП по сравнению с обычным алюминием имеет более низкий температурный коэффициент. Применяют САП для изготовления компрессорных лопаток, поршней, колец для газовых турбин и т. д. Перспективно прнмененгге компактных конструкционных материалов в условиях крупносерийного и массового производствах деталей сложной конфигурации небольших размеров.  [c.421]


Несмотря на большое количество коррозионностойких металлов и сплавов, обладающих самыми разнообразными свойствами, эти конструкционные материалы в ряде производств не могут удовлетворить растущие потребности химической промышленности как с качественной, так и с количественной стороны. В первом случае некоторые новые технологические процессы, связанные с получением чистых химических продуктов, фармацевтических препаратов, продуктов органического синтеза, с реакциями хлорирования, бромирования и т. п., не могут быть осуществлены в аппаратуре из металлических материалов. Во втором случае такие производства, как производство минеральных кислот, удобрений, солей и др., требуют для оформления их технологического оборудования больиюго количества дорогостоящих дефицитных металлов и сплавов — высоколегиршшиных сталей, свинца, никеля, меди и других цветных метал/юг, и сплавов. Применение неметаллических материалов часто позволяет решать указанные выше задачи.  [c.352]

Полимерные материалы, применяемые в виде самостоятельных коррозиоиностойких конструкционных материалов и в виде различных покрытий и композиций для защиты от коррозии стали, бетона, дерева и др., сочетают в себе комплекс весьма ценных физико-механических свойств.  [c.392]

Конструкционные материалы и покрытия на основе эпоксидных смол обладают исключительно высокими физико-химическими показателями и высокой химической стойкостью во многих агрессивных средах. Эпоксисмолы очень легко совмещаются с другими высокомолекулярными соединениями и, в зависимости от характера и природы модифицирующих веществ, обладают кислотостойкостыо, щелочестойкостью и теплостойкостью до 110—120" С. Основными ценными свойствами эпоксидных смол являются назначительная их усадка при отверждении и высокая адгезия к различным материалам (металлу, бетону, керамике II др.).  [c.407]

Сочетание высокой прочности, вязкости, твердости, термо- и химо-стойкости, малой плотности, а также пшрокие возможности формоизменения и применения производительных методов формообразования — все это делает ситаллы перспективным конструкционным материалом. По механическим свойствам ситаллы близки к чугунам и могут во многих случаях заменить последние, выгодно отличаясь от них малой плотностью, гораздо более высокой твердостью и теплостойкостью. Однако следует учитывать их низкую теплопроводность.  [c.192]

Изучение влияния агрессивных сред (металлических расплавов, продуктов сгорания, морской воды и др.) на механические свойства конструкционных материалов при длительных статических и поэторно-переменных нагрузках в условиях нормальных и высоких температур с целью выявить эффект разупрочнения материалов, обусловленный влиянием среды, а также выбрать оптимальные защитные покрытия исследуемого материала.  [c.663]

В настоящее время синергетика объединила физику диссипативных систем с биологией, что позволило открыть сз гь 6nojmrH4e Koro упорядочения. Но вернемся к кристаллу. Деформированный кристалл является диссипативной системой и поэтому становиться живым в том смысле, что при подводе к нему энергии он остается целостным (живым), пока способен освобождать себя от всей той энтропии, которую он вынуждерг производить в процессе диссипации энергии. Объединение подходов синергетики с материаловедением должно позволить вскрыть суть физического упорядочения в кристаллах при их деформировании, создать принципиально новые технологии получения конструкционных материалов с заранее заданными свойствами и новую теорию их механических свойств [20].  [c.31]

Дальнейшее развитие физико-химии углеродных кластеров и получения фуллеренов, фуллеритов и фуллероидов будут способствовать созданию новых материалов с особыми физико-химическими свойствами и улучшению механических свойств конструкционных материалов [21]. В этой связи большой интерес представляют результаты недавних исследований, выявившие наличие в структуре железо - углеродистых сплавов фуллереновых комплексов на основе Qo-  [c.214]

Забегая вперед, отметим, что в процессах дальнейшей эволюции сталей и сплавов при их эксплуатации участки с пористой стру1стурой играют немаловажную роль и являются одним из основных факторов, определяющих совокупность физико-химических и механических свойств конструкционных материалов.  [c.84]

Как известно, водород широко применяется во многих отраслях техники и промышленности. Вместе с тем, обусловленное водородом повреждение металлов считается в настояш ее время причиной многих аварий и катастроф, приносящих значительный ущерб. Среди разнообразных проявлений вредного влияния водорода на механические свойства (предел прочности, пластичность, характеристики усталости, ползучести и т. п.) особого внимания. заслуживает обусловленное водородом облегчение зарождения и роста трещин в металлах. Связано это с тем, что иезависпмо от того, насколько совершенны технология и качество изготовления, практически все конструкционные материалы и изделия из них содержат дефекты (шш врожденные, или возникшие 1 процессе эксплуатации). При этом водород, воздействующий на металлы, значительно увеличивает их чувствительность к трещина.м и увеличивает вероятность разрушения конструкций, обладающих при обычных условиях достаточной несущей способностью. Таким образом, эксплуатация металлов в атмосфере водорода приводит к необходимости оценки их трещиностойкости, а псследоваппе закономерностей роста трещин в таких условиях приобретает большое значение.  [c.349]

Титан, как и многие другие металлы, в чиетом виде не обладает комплексом свойств, предъявляемых к конструкционным материалам.  [c.78]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]



Смотреть страницы где упоминается термин Конструкционные материалы (свойства) : [c.505]    [c.267]    [c.367]    [c.442]    [c.35]    [c.125]    [c.125]    [c.310]   
Применение композиционных материалов в технике Том 3 (1978) -- [ c.41 ]



ПОИСК



АВТОЭМИССИОННЫЕ СВОЙСТВА КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

Анизотропия разрушающих деформаций для листовых композиционных материалов малой жесткоАнизотропия некоторых других физических свойств конструкционных материалов

Анизотропия свойств конструкционных материалов и ориентированное шлифование

Демпфирующие свойства конструкционных материалов (Г. С. Писаренко)

Дополнительные сведения о механических свойствах конструкционных материалов

Изменение свойств конструкционных материалов при охлаждении

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ Механические свойства конструкционных материалов, характеристики нержавеющих сталей

Кларк А. Ф., ван Рыос И. С. Программа изучения свойств конструкционных материалов при температуре

Клеи для неметаллических материалов конструкционные — Марки, свойства и применение

Конструкционные сплавы, сплавы с особыми тепловыми, упругими свойствами и полупроводниковые материалы

Материал конструкционный

Материалы конструкционные - Особенности теплофизических и механических свойств

Материалы конструкционные порошковые Свойства

Материалы конструкционные — Демпфирующие свойства

Материалы конструкционные — Демпфирующие свойства экспериментальным данным

Материалы конструкционные — Допущения о свойствах 169 — Модули

Материалы конструкционные — Допущения о свойствах 169 — Модули упругости и коэффициент Пуассон

Материалы конструкционные — Механические свойства при повышенной

Материалы конструкционные — Механические свойства при повышенной свойства

Материалы конструкционные — Механические свойства при повышенной температуре 22, 23 — Физические

Материалы конструкционные — Механические свойства при повышенной температуре 29, 30 — Физические свойства

Методы определения механических свойств конструкционных материалов

Механические и теплофизические свойства важнейших конструкционных материалов

Механические свойства конструкционных материалов

Механические свойства конструкционных материалов при низких температурах

Механические свойства паяных соединений при пониженных и повышенных температурах и влияние напаянного слоя на механические свойства конструкционного материала

Неоднородность как свойство конструкционных материалов

Основные методы определения механических свойств конструкционных материалов, полей деформаций и малоцикловой долговечности элементе конструкций

Основные моделируемые свойства конструкционных материалов

Основные свойства резины как конструкционного материала

Особенности теплофизических и механических свойств конструкционных материалов (В.С.Зарубин)

СВОЙСТВА титана как конструкционного материала Физико-химические свойства

Свойства конструкционных композиционных материалов (В.Д.Протасов)

Свойства материалов

Свойства материалов конструкционные, влияющие

Свойства материалов конструкционные, влияющие на надежность машин

Связь циклических и статических свойств конструкционных материалов

Совместимость конструкционного, технологического и вспомогательного материалов, способов пайки СП1, СП2 и ТРП с требованиями, предъявляемыми к механическим свойствам паяных соединений

Физико-механические свойства конструкционных материалов

Физико-химические свойства фосфорной кислоты и коррозионная стойкость в ней конструкционных материалов

Физико-химические свойства фтористого водорода, фтористоводородной и кремнефтористоводородной кислот и коррозионная стойкость в них конструкционных материалов

Физико-химические свойства хромовых кислот и коррозионная стойкость конструкционных материалов

Характеристики механических свойств конструкционных материалов

Химический состав и механические свойства некоторых конструкционных материалов

Экспериментальные средства исследований механических свойств конструкционных материалов при циклических нагружениях



© 2025 Mash-xxl.info Реклама на сайте