Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алгоритм решения граничных задач в напряжениях

Рассмотрим алгоритм решения упругопластических задач теории идеальной пластичности в случае, когда напряженное состояние в пластической зоне является статически определимым. В этих задачах уравнения равновесия, условие пластичности, статические граничные условия полностью определяют напряженное состояние в пластической зоне.  [c.125]


Здесь для определенности граничные условия на S для первого тела задаются в перемещениях, для второго — в напряжениях, Результаты этих расчетов — напряжения в первом теле и перемещения во втором — используются в итерационном алгоритме (4.8) для попеременного решения краевых задач для тел 1 и 2.  [c.147]

Решение математической модели позволяет рассчитать главные составляющие <3д сс и Q arp в уравнении (1) и определить возможности их реализации. При решении этой системы в конкретных случаях принимаются определенные допущения, начальные и граничные условия. Сложная зависимость тензора напряжений от тензора скоростей деформации, которая определяется уравнением (5), затрудняет решение математической модели аналитическим методом и предопределяет численный метод решения с разработкой соответствующего алгоритма решения. Тогда любая подобная задача может решаться в двух приближениях  [c.98]

Перечисленным вопросам посвящена данная книга. Она имеет инженерную направленность и содержит комплекс необходимых сведений о решении прикладных задач термопрочности, включая численную реализацию эффективных методов решения таких задач на ЭВМ и описание соответствующих алгоритмов- расчета. Определение температурных полей и полей перемещений, деформаций и напряжений в реальных элементах конструкций сложной геометрической формы при упругом и тем более неупругом поведении материала является трудоемким даже с использованием современных ЭВМ. Поэтому особое внимание в книге уделено интегральной формулировке задач теплопроводности, термоупругости, пластичности и ползучести, на основе которой строятся достаточно гибкие и универсальные методы решения таких задач (методы конечных и граничных элементов).  [c.5]

ПОДОШВОЙ внедряется симметрично относительно оси ж = О в грань у = к на величину Как и в задаче 3 (см. п. 1.4) решение разыскивается [52] в виде суперпозиции соответствуюш,их однородных решений для слоя и неоднородного решения для слоя, когда при у = кв области ж а заданы напряжения, подлежащие определению из интегрального уравнения с известными свойствами. Основная проблема здесь возникает при удовлетворении граничным условиям на боковой поверхности х = Лу), О у к. Здесь предлагается вариант удовлетворения граничным условиям на боковой поверхности из условия наилучшего приближения в смысле Чебышева, используя несколько модифицированные методы Ремеза [42]. В результате получена нелинейная задача о наилучшем приближении. При этом существенно то, что достигается равномерная погрешность по всей боковой границе и требуется привлечение значительно меньшего числа однородных решений для получения результата той же точности, что и при использовании метода коллокаций или метода наименьших квадратов. Кроме того, предложенный алгоритм позволяет ввести эффективный контроль точности результатов в процессе счета и не требует вычисления сложных контурных интегралов, что дает значительную экономию машинного времени.  [c.172]


К положительным элементам одномерного варианта МГЭ (простота логики формирования разрешающей системы уравнений, хорошая устойчивость численного процесса, непосредственное определение начальных параметров каждого обобщенного стержня из разрешающей системы и т.д.) добавляются существенно важные для расчета пластинчатых систем факторы. Ядра интегральных уравнений (функции Грина) в МГЭ не содержат сингулярных точек. По этой причине уравнение (6.20) снимает проблему вычисления многомерных сингулярных интегралов. Исключается и проблема построения численного решения в окрестностях угловых точек пластины, что весьма актуально в прямом методе граничных элементов [7]. Как будет показано ниже, этот момент позволяет существенно повысить точность решения задач устойчивости тонких пластин по предложенному алгоритму МГЭ. Использование обобщенных функций для описания нагрузки ц х, у) в (1.20) также приводит к неожиданным результатам. Реальной становится возможность вычисления касательных и нормальных напряжений в точках приложения сосредоточенных нагрузок. В этих точках, в частности, поперечная сила =0,25 (1/Ах) 00 при Ах 00 [3, с. 173]. Здесь можно отметить, что неопределенность в  [c.198]

В данной работе предлагается принципиально новый метод расчета цилиндрических складчатых систем, основанный на алгоритме МГЭ для стержневых систем. Теоретической основой метода является вариационный метод Канторовича-Власова. Решение задачи Коши изгиба прямоугольной пластины представлено в 6.2. Его можно использовать для расчета пластинчатых систем в случаях, когда плоским напряженно-деформированным состояниям элементов можно пренебречь. Алгоритм МГЭ устраняет практически все отмеченные выше недостатки существующих методов. Так, для формирования системы разрешающих уравнений типа (1.38) не используются матричные операции, не рассматривается основная система, снимаются ограничения на условия опирания пластин по торцам (граничные условия могут быть любыми, а каждая пластина может иметь смешанные граничные условия и включать как прямоугольные, так и круглые элементы), матрица коэффициентов А сильно разрежена, хорошо обусловлена и может приметаться в задачах статики, динамики и устойчивости, возможен учет ортотропии, ребер жесткости, упругого основания, переменной толщины и т.д. Таким образом, алгоритм МГЭ охватывает практически наиболее общий случай расчета. Перечисленные преимущества сопровождаются, как это бывает всегда, и недостатками. В частности, порядок матрицы А существенно больше порядка матрицы реакций метода перемещений. Однако этот недостаток  [c.232]

Другой путь сопряжения решений для подобласти состоит в применении итерационного процесса. В этом случае может быгь применен альтернирующий алгоритм, аналогичный методу Шварца. Однако если в методе Шварца имеет место частичное налегание подобластей, а граничные условия на участке их пересечения задаются в перемещениях, то здесь рекомендуется видоизменение этого метода, при котором подобласти соприкасаются между собой без налегания. Одновременно изменяется характер граничных условий, которые задаются во всех итерациях для одной из подобластей в перемещениях, а для другой в напряжениях. Обоснование этого способа, а также анализ некоторых других вариантов вычислительных трудностей, возникающих прт сопряжении решений в подобластях, характерных для задач о контактном взаимодействии, рассмотрены в гл. 4.  [c.58]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


На необходимость поиска такого способа указано в работе Кояло-вича [70] при решении статических задач. Анализ выражений для напряжений на граничных поверхностях показывает, что такой алгоритм действительно можно построить.  [c.173]

В монографии изложены результаты исследования напряженно-деформированного состояния контактирующих элементов конструкций, полученные с помощью метода конечных элементов и метода граничных интегральных уравнений, известного также под названием метод граничных элементов. Эти перспективные современные численные методы удобны для решения на ЭВМ широкого класса контактных задач механики деформируемого тела и в рамках одной программной реализации позволяют учесть большое число практически важных факторов, таких, как сложная геометрия и произвольный характер внешних воздействий, различные условия контактного взаимодействия. Метод конечных элементов представляется более универсальным, так как позволяег легко учесть физическую и геометрическую нелинейность, объемные силы, зависимость свойств материала от температуры. В методе граничных элементов учет этих факторов настолько увеличивает рудоемкость решения задачи, что сводит на нет основные преимущества метода, такие, как дискретизация только границы области и малый объем входной информации. Поэтому в книге метод граничных элементов использован только для решения контактных задач теории упругости, где наряду с простотой задания исходной информации он может дать и выигрыш машинного времени за счет понижения размерности задачи на единицу, особенно для бесконечных и полубесконечных областей. Метод граничных элементов позволяет построить также более совершенный алгоритм для учета трений в зоне контактных взаимодействий. По-виднмому, еще большего выигрыша следует ожидать в некогорых задачах при совместном использовании обоих методов.  [c.3]

На основе полученных в данной главе результатов можно сделать вывод, что МКЭ является эффективным средством для решения контактных задач. Он позволяет в рамках единой программной реализации рассматривать довольно обширный класс задач с различными условиями контактных взаимодействий. Метод является индифферентным по отношению к геометрии контактирующих деталей, сложным граничным условиям и объемной нагрузке. Свойства материала могут быгь неоднородными и анизотропными, а связь напряжений с деформациями нелинейной Все перечисленные факторы несущественно сложняют алгоритмы и трудоемкость решения = адачи  [c.46]

Предложенная в настоящей работе методика решения контактных задач МКЭ и ПМГЭ позволяет рассмотреть совместную деформацию диска и вала в условиях переменного в осевом направлении напряженного состояния. Алгоритм контактного взаимодействия обеспечивает учет изменения граничных условий (освобождение от натяга на части контактной площадки), благодаря чему можно получить реальное распределение давлений в соединении и достоверную картину напряженного состояния диска в зоне расточки одновременно.  [c.209]

В отличие от задач без трения, которые могут быть сведены к решению вариационных неравенств или к задаче минимизации выпуклого функционала на вьшуклом множестве ограничений, содержащем ограничения в виде неравенств, контактная задача с трением сводится к решению квазива-риационного неравенства. В работе [29] приведен итерационный процесс решения такого неравенства, а также дан алгоритм практического решения задачи, основанный на идее двойственности. Решение задачи проводится с помощью алгоритма типа Удзавы. На каждой итерации решается задача, эквивалентная обычной задаче теории упругости с граничными статическими условиями на Гк, причем последовательно уточняются как напряжения а , так и напряжения а . Для определения этих напряжений по данным предьщущей итерации применяются операторы ортогонального проектирования на множество Стр<0, Эти операторы имеют вид  [c.152]

В гл. 3 мы привели простейшую схему численного решения задач о потенциальных течениях, использующую кусочно-постоян-ные распределения р, р и м по граничным элементам. Хотя такой простой подход позволил нам продемонстрировать все принципиальные особенности техники построения решения, более эффективным оказывается алгоритм, в котором указанные выше величины изменяются по крайней мере линейно в пределах каждого граничного элемента. Кроме того, в некоторы адачах теории упругости (таких, как задача об изгибе балки) кусочно-постоянная аппроксимация не обеспечивает правильного распределения касательного напряжения в поперечном сечении балки, и поэтому в гл. 4 было необходимо использовать кусочно-линейные функции t и U.  [c.147]

Не повторяя подробно весь алгоритм расчета, отметим здесь лишь основные его этапы, а также укажем на некоторые исходные предпосылки и особенности задания граничных условий. Сжатие резинового бурта оболочки происходит при сближении двух жестких штампов. Предполагается, что весь объем деформируемого в узле зашемления материала может смещаться лишь в направлении от оси муфты. Возникающие при этом силы трения подчиняются закону Кулона. Напряженное состояние бурта оболочки при сближении штампов рассматривается как осесимметричное при этом матрицы жесткости кольцевых конечных элементов, на которые в процессе решения задачи разбивается бурт оболочки, определяются согласно зависимости (1.25). В общем случае поверхности штампов (фланца полумуфты и прижимного кольца) могут иметь конфигурацию, отличную от ответных поверхностей бурта оболочки. При проведении расчетов задача о нагружении бурта оболочки решалась методом сил, поскольку он обеспечивает большую точность, чем метод перемещений, хотя алгоритм расчета в этом случае оказывается более сложным. Процесс нагружения бурта оболочки во избежание ошибок, связанных с проявлением эффектов конструкционной и геометрической нелинейностей, разбивался на ряд последовательных шагов. В пределах каждого шага с помощью итерационной процедуры устанавливались величины и характер распределения нормальных и касательных сил на контактной поверхности бурта. Суть итерационной процедуры состоит в следующем. Задается шаговое сближение штампов путем задания новых значений координат точек поверхности штампов, а также начальная система распределенных нормальных и касательных сил, которая в каждой узловой точке на поверхности контакта бурта дает составляющие Fri и F i (рис. 5.2).  [c.107]



Смотреть страницы где упоминается термин Алгоритм решения граничных задач в напряжениях : [c.354]    [c.129]   
Смотреть главы в:

Гармонические колебания и волны в упругих телах  -> Алгоритм решения граничных задач в напряжениях



ПОИСК



Алгоритм

Алгоритм решения

Граничные для напряжений

Задача в напряжениях

Решение граничных задач



© 2025 Mash-xxl.info Реклама на сайте