Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приближенное решение задач пластичности. Метод упругих решений

Решение задач теории пластичности связано с решением системы нелинейных дифференциальных уравнений в частных производных (10.24). . . (10.28), что представляет собой чрезвычайно сложную задачу, которая в аналитическом виде решается, как правило, в исключительных случаях. Поэтому решение задачи теории пластичности чаще всего строится с помощью приближенных методов. Одним из них является метод последовательных приближений, предложенный А. А. Ильюшиным и называемый в теории пластичности методом упругих решений. Суть его заключается в рассмотрении последовательности линейных задач теории упругости, решения которых с увеличением порядкового номера сходятся к решению задачи теории пластичности.  [c.310]


Относительно процесса последовательных приближений по рассмотренной модификации метода упругих решений можно заметить, что в теории пластичности доказана его сходимость к точному решению для задач, в которых граничные условия формулируются только в перемещениях (и = v = w 0) или в напряжениях при  [c.313]

Рассмотрим теперь ход решения задачи теории пластичности методом упругих решений. В первом приближении полагаем = 0. Тогда из формул (11.24) и (11.26) следует, что в первом приближении  [c.230]

На примере расчета статически неопределимых систем проявляется формальная аналогия между решением задач упругости и решением задач пластичности методом переменных параметров упругости для стержней. В характеристику жесткости сечения стержня в упругом случае вносят поправку с помощью интегральной функции пластичности при упругопластическом деформировании задачу решают в деформациях, а не в напряжениях (усилиях), если приходится находить решение методом последовательных приближений. Например, теорему о трех моментах для многопролетных неразрезных балок при упругопластическом деформировании по ана-  [c.46]

Расчеты на ползучесть по теории старения эквивалентны расчетам при нелинейных зависимостях между напряжениями и деформациями. Наиболее общая формулировка теории старения принадлежит Ю. Н. Работнову [124, 125]. Согласно ей напряжения и деформации в условиях ползучести для заданного значения времени определяются путем расчета детали на основе изохронной кривой ползучести для этой величины времени. Поэтому так же, как и в случае установившейся ползучести, результаты, полученные в теории пластичности [50, 60, 149], а также приближенные методы решения упруго-пластических и пластических задач, например метод упругих решений [50], метод переменных параметров упругости [8, 9], вариационные методы [60], могут быть использованы и для расчетов по теории старения.  [c.220]

Решение уравнений пластичности в общем случае весьма сложно. Поэтому имеются приближенные решения, которые значительно упрощают общие рещения. Метод упругих решений, основанный на принципе последовательных приближений, нашел широкое применение в приближенном решении задач пластичности. При этом решается задача теории упругости для заданных внешних сил X, У, 2, а, <3г и находятся перемещения и,  [c.108]


Накопленный опыт применения метода упругих решений в форме метода переменных параметров упругости при решении задач теории пластичности говорит о том, что он обеспечивает сходимость последовательных приближений к точному решению, однако до настоящего времени строгого доказательства этого утверждения нет.  [c.316]

Точно так же возможно применение методов теории упругости к решению задачи теории пластичности, а именно прямого, обратного и полуобратного. Очень эффективным является приближенный метод, предложенный А. А. Ильюшиным — метод упругих решений.  [c.271]

Наиболее эффективным из приближенных методов в теории пластичности следует считать метод последовательных приближений А. А. Ильюшина, именуемый методом упругих решений [3] в нем для первого приближения принимается решение аналогичной задачи теории упругости (со сходственными граничными и другими условиями), благодаря чему в первом приближении выясняются границы между упругими и пластическими зонами как по длине стержня (пластинки и др.), так и по высоте сечения. Это позволяет в первом приближении вычислить для каждой точки такого сечения значение числа ш, входящего в основной физический закон пластичности (4.13). Зная величину ш, можно в порядке первого уточнения исправить ранее вычисленные компоненты напряжения, внести поправки в первоначальные основные уравнения теории упругости, что определит новые границы между упругой и пластическими зонами,  [c.193]

Решение многих упруго-пластических и пластических задач сопряжено со значительными трудностями, что обусловило широкое применение в теории пластичности различных приближенных методов, из которых наиболее распространенными являются вариационные и последовательных приближений. В методах последовательных приближений упруго-пластическая задача сводится к последовательному решению упругих задач, в связи с чем они называются методами упругих решений. Наиболее общий вариант этого метода разработан А. А. Ильюшиным [38]. В дальнейшем он был развит в работах И. А. Биргера.  [c.46]

Идея линеаризации уравнений теории пластичности принадлежит А.А.Ильюшину, который предложил метод решения задач теории малых упругопластических деформаций - метод упругих решений [37]. Метод заключается в том, что пластическое тело заменяется упругим, имеющим такие же, как и пластическое, перемещения и деформации. Такая замена возможна при условии, что в теле возникают дополнительные напряжения, приводящие к дополнительным объемным и поверхностным силам. Эти первоначально неизвестные силы определяются путем последовательных приближений.  [c.231]

Если зависимость ё = /(ст) более сложная (отличная от степенной), то точное решение задачи в аналитической форме затруднительно. В этом случае используют методы последовательных приближений, которые совпадают с различными модификациями метода упругих решений в теории пластичности при замене в ее соотношениях деформации е ее скоростью ё (см. п. 8.7.3). Тогда при установившейся ползучести распределение напряжений в поперечном сечении балки совпадает с распределением Напряжений в упругопластической балке при законе деформирования е=/(а).  [c.67]

Для решения задач пластичности можно применить следующий общий метод, называемый методом упругих решений 14. Положим в первом приближении а>о = > что = i ) == 0. Тогда из (2.73) и (2.76) имеем уравнения теории упругости в форме Ляме и граничные условия в напряжениях, т. е. в первом приближении имеем обычную задачу теории упругости. Предположим, что для данных массовых и поверхностных сил она решена, и найден вектор перемещения с его проекциями По формулам (2.63) и (2.64) находим деформации и по формулам (2.62) — напряжения в первом приближении  [c.124]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]


Решение задач геометрической нелинейности приводит к перестройке на каждом шаге матрицы производных [В], а решение задачи физической нелинейности требует формирования на каждом шаге итерации матрицы упругих характеристик [/)]. Таким образом, временные затраты на переформирование матрицы жесткости конструкции [/<] окупаются возможностью учета обоих видов нелинейностей. Как показывает опыт, метод последовательных приближений дает хорошие результаты при решении с помощью метода конечных элементов задач температурной пластичности, а также ползучести, когда происходит постепенное накопление пластической деформации в конструкции, находящейся под нагрузкой при повышенной температуре в течение некоторого периода времени.  [c.67]

В соответствии с методом переменных параметров упругости для получения следующего приближения принимают, что решение задачи теории пластичности сводится к решению соответствующей задачи теории упругости с такими  [c.100]

Изложенное выше послужило основанием к тому, что в последние годы в практике научных исследований и инженерных расчетов в области прочности все чаще прибегают к использованию приближенных численных методов решения задач теории упругости н пластичности.  [c.16]

Общие методы решения задач теории пластичности. Для решения нелинейных уравнений теории упруго-пластических деформаций применяют различные варианты метода последовательных приближений. Решение задач теории пластичности сводится при этом к решению последовательности линейных задач, каждая из которых может быть интерпретирована как некоторая задача теории упругости.  [c.74]

Метод дополнительных деформаций. В этом методе, в отличие от метода переменных параметров упругости, деформация пластичности рассматривается как дополнительная, имеющая характер анизотропной температурной деформации. Основной в этом случае является обычная задача теории упругости с постоянными параметрами упругости, что существенно упрощает упругое решение. Однако структура процесса последовательных приближений оказывается несколько сложнее, чем в методе переменных параметров упругости.  [c.504]

Приближенная трехмерная теория для упругих лопаток служит основой для построения расчета с учетом деформации пластичности и ползучести. В этом случае может быть использован метод дополнительных деформаций и общие алгоритмы решения задач теории пластичности и ползучести [3].  [c.323]

Решение задач вязкоупругопластичности связано с решением системы нелинейных интегро-дифференциальных уравнений в частных производных типа (1.68), (1.69). Это представляет собой не менее сложную математическую проблему, чем задачи теории пластичности. 17оэтому воспользуемся здесь методом последовательных приближений, который базируется на методе упругих решений Ильюшина, рассмотренном ранее.  [c.62]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Запись уравнений пластичности в форме уравнений упругости Hie не продвигает дело, так как зпачепия секущего модуля и ко-оффнпнента Пуассона. заранее неизвестны. Решение задачи находят методом последовательных приближений.  [c.128]

Для решения задачи определения напряженного состояния в области пластичности применяют метод упругих решений, основанный на теории малых упругопластических деформаций [23]. Метод сводится к повторению последовательности упругих решений с переменными параметрами упругости или с дополнительными нагрузками [6]. Для этого программа решения неоднородноупругой задачи дополняется группой команд вычисления переменных параметров упругости (или дополнительных нагрузок) и используется повторно [1]. Сходимость приближений для материалов с упрочнением — устойчивая. При решении  [c.609]

Рассмотрение деформации П. за пределами упругости ведётся на основе тех или иных пластичности теорий теории малых упругопластич. деформаций, теории течения и др. При решении задач с помощью теории малых упругопластич. деформаций может быть применён метод упругих решений, состоящий в построении ряда гю-следоват, приближений, для каждого из к-рых применяется аппарат упругой задачи. Если поведение материала П. зависит от времени, расчёт ведётся с помощью ползучести теории, в частности так рассчитывают конструкции, испытывающие действие высоких темп-р.  [c.626]


При решении задачи теории пластичности можно использовать те же способы, что и в теории упругости решение в напряжениях, в перемещениях и смешанный способ. Точно так же возможно применение методов теории упругости, а именно прямого, обратного и полуобрат-ного. Однако решение задачи теории пластичности имеет свои специфические особенности вследствие нелинейности. Эффективным является приближенный метод, предложенный А. А. Ильюшиным, — метод упругих решений (разновидность метода последовательных приближений).  [c.229]

Если закон деформирования материала оказывается более сложным, то задача о щ>у-чении может быть решена методом последовательных приближений (методом упругих решений) точно так же, как задача о кручении упругопласгического стержня, выполненного КЗ упрочняющегося материала. В соотношениях теории пластичности деформации заменяют их скоростями.  [c.68]

В деформационной теории пластичности для анализа напряжений широко используется метод упругих решений, разработанный А. А. Ильюшиным [103]. Названный метод в каждом приближении состоит в решении задачи неоднородной теории упругости. С этой целью уравнения поля для процесса нагружения выражаются в перемещениях . В нулевом приближении принимается решение линейной термоупругой задачи для неоднородного тела с заданными граничными условиями при данной интенсивности поверхностной нагрузки. Если известны деформации, согласно (4.12) можно вычислить эквивалентные деформации. Далее, когда в какой-либо точке возникает текучесть, секущий модуль в Х4.9) ф 2[х при (О == (о(ёу, 0) О, Соотношение напряжений — деформации для рассматриваемого материала дается, например, выражением (4.16), следовательно, можно определить секущий модуль. Это позволяет найти из закона Гука соответствующее напряжение, скажем Wij, Если дулевое приближение является точным, будет справедливо равенство ац = ц. Если же это приближение не является точным, то ищется следующее приближение, при котором значение рассматривается как ис-трчник фиктивных массовых сил /П/ и поверхностных нагрузок д ], определяемых как рт,- = Wi/, /, qi s где / — внеш-  [c.135]

Рассматривается развитие метода малого параметра применительно к упруго-пластическим задачам теории идеальной пластичности. В настоящее время имеется сравнительно небольшое число точных и приближенных решений упруго-пластических задач теории идеальной пластичности, поскольку возникаюш,ие здесь математические трудности весьма велики. Впервые задачу о распространении пластической области от выреза, вызываюш,его концентрацию напряжений в сечении скручиваемого стержня, решил Треффтц [1]. Он рассматривал уголковый контур и при решении задачи использовал метод конформного отображения. Несколько ранее Надаи [2] была предложена песчаная аналогия, позволившая в соединении с мембранной аналогией Прандтля осуш ествить моделирование задач упруго-пластического кручения стержней. В. В. Соколовский [3] рассмотрел задачу об упруго-пластическом кручении стержня овального сечения ряд решений задач о кручении стержней полигонального сечения был дан Л. А. Галиным [4, 5]. Большая литература посвящена одномерным упруго-пластическим задачам отметим работы [2, 3, 6-8]. Точное решение неодномерной задачи о двуосном растяжении толстой пластины с круговым отверстием было дано Л. А. Галиным [9], использовавшим то обстоятельство, что функция напряжений в пластической области является бигармониче-ской. Там же Л. А. Галин рассмотрел случай более общих условий на бесконечности. Впоследствии Г. Н. Савин и О. С. Парасюк [10-12 рассмотрели некоторые другие задачи об образовании пластических областей вокруг круглых отверстий.  [c.189]

Решение упруго-пластических задач, как правило, сопряжено со значительными трудностями. Многие задачи расчетов за пределами упругости до сих пор не имеют решения. Поэтому в теории пластичности еще в большей степени, чем в теории упругости, имеют значение приближенные методы решения. Наиболее распространенными 113 них являются вариационные методы, а также методы, в которых упруго-пластическая задача сводится к последовательности упругих шдач в результате применения процесса последовательных прибли-> <ений. Последние методы могут быть названы методами упругих решений.  [c.135]

Методам и средствам решения этих задач и посвящена настоящая книга. В гл. 1 дана характеристика проблемно-ориентированного комплекса алгоритмов, программная реализация которого позволила получить необходимые решения краевых задач нестационарной теплопроводности, упругости, пластичности, задач оиределения ресурса на стадии возникновения и развития макротрещин, а также диагностирования дефектов по изменению электромеханических характеристик. В алгоритме сочетаются численные методы решения линейных и линеаризованных систем уравнений высокого порядка (10 и более) с приближенными аналитическими методами. -КоаеЕые словия определены экспериментально  [c.17]

В теории упругости и пластичности применяют и приближенные методы. В связи с этим различают математическую и прикладную теорию упругости и пластичности, причем в последнем случае решение задач базирхется на ряде дополнительных допущений.  [c.4]

Широко известно, что одним из первых математиков, принимавших участие в становлении МКЭ, был Курант. Он представил приближенный метод решения задачи кручения Сен-Венана с помощью принципа минимума дополнительной энергии, используя линейную аппроксимацию функции напряжений внутри каждого из совокупности треугольных элементов [1]. С другой стороны, наиболее важными и исторически первыми среди пионерских работ по МКЭ в задачах расчета конструкций считаются статьи Тёрнера, Клафа, Мартина и Топпа [2] и Аргириса и Келси [3]. После появления этих статей вариационный метод стал интенсивно использоваться в математических формулировках МКЭ. И обратно, быстрое развитие МКЭ сообщило мощный стимул к разработке вариационных методов за последнее десятилетие появились новые вариационные принципы, такие, как вариационные принципы со смягченными условиями непрерывности [4—8], принцип Геррмана для несжимаемых или почти несжимаемых материалов [9, 10] и для задач изгиба пластин [11, 12] и т. д. Цель части В состоит в том, чтобы дать краткий обзор достижений в области вариационных принципов, которые служат основой МКЭ в теории упругости и теории пластичности. С практическим использованием этих принципов при формулировке МКЭ читатель может ознакомиться по работам [5—7].  [c.340]

Появление современных быстродействующих ЭВМ существен-во расширило границы применения строгих математаческих методов в механике деформируемого тела. Это прежде всего приближенные численные методы решения задач теории упругости, пластичности и ползучести, рассматриваемые в настоящей главе.  [c.40]

Большой вклад в теории пластичности и пЪлзучести был сделан советскими учеными, которым принадлежит анализ и развитие теорий, экспериментальная проверка их, решения задач по различным теориям, разработка приближенных методов решения задач и внедрение расчетов за пределами упругости и на ползучесть в технику.  [c.8]



Смотреть страницы где упоминается термин Приближенное решение задач пластичности. Метод упругих решений : [c.22]    [c.13]    [c.137]    [c.85]    [c.234]    [c.268]    [c.74]    [c.285]    [c.246]    [c.246]    [c.232]    [c.328]   
Смотреть главы в:

Краткий курс теории упругости и пластичности  -> Приближенное решение задач пластичности. Метод упругих решений



ПОИСК



Задача и метод

Задача упругости

Задачи и методы их решения

К упругих решений

Метод упругих решений

Методы приближенные

Пластичность методы решения задач

Пластичность упругих решений

Приближенные методы решения

Приближенные методы решения задач

Решение задачи упругости

Решения метод

Решения приближенные

Упругость и пластичность



© 2025 Mash-xxl.info Реклама на сайте