Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность упругих решений

Наиболее распространен для задач теории пластичности принцип упругих решений, основанный на представлении решения пластической задачи в виде решения последовательно уточняемых задач теории упругости с некоторыми дополнительными условиями. В зависимости от формулировки дополнительных условий используются различные итерационные схемы, на которых на каждой итерации осуществляется решение упругой задачи.  [c.418]


Приведены решения простейших задач теории пластичности. Изучается развитие пластических зон и образование пластических шарниров в балках. Описана процедура применения метода упругих решений и теоремы о разгрузке. Рассмотрена задача об упругопластической деформации толстостенной трубы под действием внутреннего давления.  [c.275]

Решение уравнений пластичности в общем случае весьма сложно. Поэтому имеются приближенные решения, которые значительно упрощают общие рещения. Метод упругих решений, основанный на принципе последовательных приближений, нашел широкое применение в приближенном решении задач пластичности. При этом решается задача теории упругости для заданных внешних сил X, У, 2, а, <3г и находятся перемещения и,  [c.108]

Решение задач теории пластичности связано с решением системы нелинейных дифференциальных уравнений в частных производных (10.24). . . (10.28), что представляет собой чрезвычайно сложную задачу, которая в аналитическом виде решается, как правило, в исключительных случаях. Поэтому решение задачи теории пластичности чаще всего строится с помощью приближенных методов. Одним из них является метод последовательных приближений, предложенный А. А. Ильюшиным и называемый в теории пластичности методом упругих решений. Суть его заключается в рассмотрении последовательности линейных задач теории упругости, решения которых с увеличением порядкового номера сходятся к решению задачи теории пластичности.  [c.310]

Относительно процесса последовательных приближений по рассмотренной модификации метода упругих решений можно заметить, что в теории пластичности доказана его сходимость к точному решению для задач, в которых граничные условия формулируются только в перемещениях (и = v = w 0) или в напряжениях при  [c.313]

Накопленный опыт применения метода упругих решений в форме метода переменных параметров упругости при решении задач теории пластичности говорит о том, что он обеспечивает сходимость последовательных приближений к точному решению, однако до настоящего времени строгого доказательства этого утверждения нет.  [c.316]

ПРИЛОЖЕНИЕ МЕТОДОВ ТЕОРИИ УПРУГОСТИ И ПЛАСТИЧНОСТИ К РЕШЕНИЮ ИНЖЕНЕРНЫХ ЗАДАЧ  [c.1]

Изложим так называемый метод упругих решений [116], применяемый при решении задач теории пластичности в рамках теории малых упруго-пластических деформаций.  [c.670]


При решении задачи теории пластичности можно использовать те же способы, что и в теории упругости решение в напряжениях, в перемещениях и смешанный способ.  [c.271]

Точно так же возможно применение методов теории упругости к решению задачи теории пластичности, а именно прямого, обратного и полуобратного. Очень эффективным является приближенный метод, предложенный А. А. Ильюшиным — метод упругих решений.  [c.271]

Наиболее эффективным из приближенных методов в теории пластичности следует считать метод последовательных приближений А. А. Ильюшина, именуемый методом упругих решений [3] в нем для первого приближения принимается решение аналогичной задачи теории упругости (со сходственными граничными и другими условиями), благодаря чему в первом приближении выясняются границы между упругими и пластическими зонами как по длине стержня (пластинки и др.), так и по высоте сечения. Это позволяет в первом приближении вычислить для каждой точки такого сечения значение числа ш, входящего в основной физический закон пластичности (4.13). Зная величину ш, можно в порядке первого уточнения исправить ранее вычисленные компоненты напряжения, внести поправки в первоначальные основные уравнения теории упругости, что определит новые границы между упругой и пластическими зонами,  [c.193]

Оценка материала по предполагает идеально упругое разрушение, в то время как бс этого не предполагает. Для оценки квазихрупкого разрушения с помощью в упругое решение приходится извне, в виде дополнительных предположений, вво- дить область пластических деформаций с целью учета свойств материала при пластическом течении и его реального поведения у вершины трещины. В то же время учет пластичности органически присущ теории критического раскрытия трещины бс.  [c.137]

В случае трещин в упруго-пластических тепах в конечной окрестности краев разрыва могут проявляться свойства пластичности и возникать пластические деформации. Пластические области в зависимости от характера внешних нагрузок могут иметь различный вид. Опыт показывает, что в некоторых частных примерах эти пластические области представляют собой тонкие слои различной конечной длины которые можно рассматривать как продолжения просветов, образующихся при разрыве перемещений внутри тела. Тонкие слои пластического деформирования у краев трещин с точки зрения упругих решений можно рассматривать как дополнительные разрывы упругих перемещений на участках причем поверхностные напряжения на этих участках определяются или задаются приближенно из рассмотрения пластических состояний в слое. Ниже излагается теория трещин в хрупких телах, в которой й принимается равной нулю. В том случае, когда конечность размера зависящего от свойств пластичности, формы тела, положения разрыва в теле и вида внешних нагрузок, существенна, эту теорию и соответствующие критерии необходимо видоизменить.  [c.539]

В отечественной литературе метод, основанный на той же идее, что и метод начальных напряжений (и деформаций), известен под названием метода упругих решении (см. Ильюшин А. А., Пластичность, М. — Л., ГИТТЛ, 1948). — Прим. ред.  [c.216]

Методика расчета, использованная в рассматриваемом случае, основана на упругом решении. Если для элементов, находящихся в состоянии текучести, вместо матрицы жесткостей [D ] воспользоваться матрицей [D ], учитывающей пластичность, то можно создать методику, предназначенную для решения упругопластических задач.  [c.74]

Применение упругих решений в задачах теории пластичности, ползучести и вязко-упругости  [c.46]

Решение многих упруго-пластических и пластических задач сопряжено со значительными трудностями, что обусловило широкое применение в теории пластичности различных приближенных методов, из которых наиболее распространенными являются вариационные и последовательных приближений. В методах последовательных приближений упруго-пластическая задача сводится к последовательному решению упругих задач, в связи с чем они называются методами упругих решений. Наиболее общий вариант этого метода разработан А. А. Ильюшиным [38]. В дальнейшем он был развит в работах И. А. Биргера.  [c.46]


Один из возможных вариантов метода упругих решений, предложенный И. А. Биргером [15, 87, 124], называется методом переменных параметров упругости. Суть его состоит в том, что задача теории пластичности сводится к последовательному решению задач теории упругости неоднородного тела. Очевидно, что изложенные в настоящей книге решения в значительной степени расширяют возможности этого метода.  [c.46]

Решение задач пластичности и ползучести сведено к последовательности упругих решений с переменными параметрами упругости [б]. Для этого после определения упругих напряжений О и Of, находят эквивалентные напряжения  [c.612]

Решение задачи пластичности проводится по методу упругих решений с переменными параметрами упругости, так же как в предыдущем примере для диска однако коэффициент Пуассона считается постоянным. В результате решения получается поле напряжений <Х и во всех 160 расчетных точках. Время решения одной упругой задачи на машине 2 — 10 мин., а пластической 1—3 часа.  [c.613]

Рассмотрим теперь ход решения задачи теории пластичности методом упругих решений. В первом приближении полагаем = 0. Тогда из формул (11.24) и (11.26) следует, что в первом приближении  [c.230]

Метод переменных параметров упругости. Данный метод, разработанный И. А. Биргером, так же, как и метод упругих решений, является итерационным, но основан на другом представлении физических соотношений теории пластичности.  [c.514]

Решение матричного уравнения (2.3.24) сводится, по существу, к решению системы нелинейных алгебраических уравнений со многими неизвестными. Для этого используют рассмотренные в п. 2.3.2 итерационные методы решения задач теории пластичности в виде последовательности линейных упругих решений.  [c.100]

Идея линеаризации уравнений теории пластичности принадлежит А.А.Ильюшину, который предложил метод решения задач теории малых упругопластических деформаций - метод упругих решений [37]. Метод заключается в том, что пластическое тело заменяется упругим, имеющим такие же, как и пластическое, перемещения и деформации. Такая замена возможна при условии, что в теле возникают дополнительные напряжения, приводящие к дополнительным объемным и поверхностным силам. Эти первоначально неизвестные силы определяются путем последовательных приближений.  [c.231]

Если зависимость ё = /(ст) более сложная (отличная от степенной), то точное решение задачи в аналитической форме затруднительно. В этом случае используют методы последовательных приближений, которые совпадают с различными модификациями метода упругих решений в теории пластичности при замене в ее соотношениях деформации е ее скоростью ё (см. п. 8.7.3). Тогда при установившейся ползучести распределение напряжений в поперечном сечении балки совпадает с распределением Напряжений в упругопластической балке при законе деформирования е=/(а).  [c.67]

Метод дополнительных деформаций. Наряду с методом переменных параметров упругости метод дополнительных деформаций представляет собой удобный прием численного решения задач пластичности и ползучести использовать его особенно эффективно для задач, имеющих аналитическое упругое решение. Преобразуем (3.4) для деформаций в упругопластическом теле с учетом  [c.77]

Родионов В. К., Шишмарев О. Д., Щербо А. Г. Экспериментальное исследование некоторых закономерностей пластического деформирования ста-лей//Прикладные проблемы прочности и пластичности. Методы решения задач упругости и пластичности,— Горький Изд-во ГГУ, 1983,— Вып. 23,—  [c.374]

Цилиндрическая оболочка под давлением, жестко закрепленная по краю. Этот пример рассмотрен в работе [6] с применением метода упругих решений и приведен в работе [7], Получающаяся по упругому расчету максимальная интенсивность напряжений в заделке возникает на внутренней поверхности оболочки и равна а, = sfbpRjh, что вдвое больше интенсивности напряжений в гладкой части оболочки вдали от заделки. Поэтому текучесть начинается в заделке при давлении = Ojh/Ry/J. Для упрощения выкладок и облегчения решения принимается, что интегральные функции пластичности 1, h, h в пределах упругопластической области не меняются и сохраняют свое минимальное значение. В результате получено, что пластические деформащ1и появляются в заделке при р > (4/7) Pj, что почти вдвое ниже условия, определяемого по действительным напряжениям в заделке.  [c.211]

Для решения задачи определения напряженного состояния в области пластичности применяют метод упругих решений, основанный на теории малых упругопластических деформаций [23]. Метод сводится к повторению последовательности упругих решений с переменными параметрами упругости или с дополнительными нагрузками [6]. Для этого программа решения неоднородноупругой задачи дополняется группой команд вычисления переменных параметров упругости (или дополнительных нагрузок) и используется повторно [1]. Сходимость приближений для материалов с упрочнением — устойчивая. При решении  [c.609]

Рассмотрение деформации П. за пределами упругости ведётся на основе тех или иных пластичности теорий теории малых упругопластич. деформаций, теории течения и др. При решении задач с помощью теории малых упругопластич. деформаций может быть применён метод упругих решений, состоящий в построении ряда гю-следоват, приближений, для каждого из к-рых применяется аппарат упругой задачи. Если поведение материала П. зависит от времени, расчёт ведётся с помощью ползучести теории, в частности так рассчитывают конструкции, испытывающие действие высоких темп-р.  [c.626]


Задачи течения неньютоновских жидкостей. Этот класс задач рассматривает течение структурно-вязких жидкостей (жидкие полимеры, стекла, эмульсии и др.), вязкость которых зависит от режима течения даже при малых числах Рейнольдса. Для решения таких задач используются численные методы пограничного слоя или методы решения задач по течению в каналах с введением дополнительных соотношений для расчета реологических свойств (вязкости, пластичности, упругости и т.д.). Поскольку для решения таких задач используются уравнения, описывающие течение ньютоновских жидкостей, вся аномалия вводится формально в изменение свойств этих жидкостей. Как правило, это ведет к сильсюй зависимости свойств от искомых функций. Так, для высоковязких парафинистых нефтей их вязкость определяется как функция температуры среды и производной скорости. Такой характер зависимости свойств неиьютоновск 1х жидкостей вызывает повышение нелинейности системы уравнений, что в конечном счете ведет лишь к увеличению итераций при использовании метода прогонки.  [c.188]

Научные работы академика Шиманскио позволили расширить практические приложения теории упругости и пластичности к решению инженерных задач кораблестроения. Это научное направление отличается строгостью и общностью исследований, уступая другому, решающему те же задачи средствами дисциплины сопротивление материалов , в простоте результатов и полноте охвата объектов.  [c.63]

При решении задачи теории пластичности можно использовать те же способы, что и в теории упругости решение в напряжениях, в перемещениях и смешанный способ. Точно так же возможно применение методов теории упругости, а именно прямого, обратного и полуобрат-ного. Однако решение задачи теории пластичности имеет свои специфические особенности вследствие нелинейности. Эффективным является приближенный метод, предложенный А. А. Ильюшиным, — метод упругих решений (разновидность метода последовательных приближений).  [c.229]

Впоследствии было предложено еще несколько методов линеаризации уравнений пластичности, развивающих идеи методов упругих решений, дополнительных деформадай и переменных параметров упругости [8, 13, 100, 107].  [c.232]

Если закон деформирования материала оказывается более сложным, то задача о щ>у-чении может быть решена методом последовательных приближений (методом упругих решений) точно так же, как задача о кручении упругопласгического стержня, выполненного КЗ упрочняющегося материала. В соотношениях теории пластичности деформации заменяют их скоростями.  [c.68]

В предположении малости зоны пластичности по сравнению с геометрическими размерами задач, наряду с круговым контуром l радиусом г, выбирался круговой контур Сг радиусом R, лежащий в зоне справедливости асимптотики линейно упругого решения. Значения интеграла Райса по контурам i и Сг в силу доказанного приравнивались. Таким образом, было получено значение коэффициента к.  [c.75]

Рис. 3.5. Напряженное состояаве в пластине с отверстием при чистим сдвиге I — упругое решение 2 — пластичность" Рис. 3.5. Напряженное состояаве в пластине с отверстием при <a href="/info/6022">чистим сдвиге</a> I — <a href="/info/373594">упругое решение</a> 2 — пластичность"

Смотреть страницы где упоминается термин Пластичность упругих решений : [c.613]    [c.13]    [c.160]    [c.47]    [c.2]    [c.358]    [c.549]    [c.206]    [c.286]   
Механика композиционных материалов Том 2 (1978) -- [ c.216 ]



ПОИСК



К упругих решений

Некоторые методы решения задач теории упругости и пластичности

Определение прогибов балок при упруго-пластическом изгибе О решении некоторых простейших задач теории пластичности

Основные положения алгоритма решения задач упругости и пластичности при простом и сложном нагружениях

Приближенное решение задач пластичности. Метод упругих решений

Приближенное решение упруго-пластических задач теории идеальной пластичности

Применение упругих решений в задачах теории пластичности, ползучести и вязко.упругости

Упругость и пластичность



© 2025 Mash-xxl.info Реклама на сайте