Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип ДАламбера и принцип виртуальных перемещений

Таким образом, в нашем распоряжении два пути к получению уравнений движения несвободной системы. Один путь тот, которым мы шли, а именно, сначала были составлены выражения для реакций связей, затем были написаны уравнения движения несвободной системы, а из них уже были получены как следствия принцип Даламбера и принцип виртуальных перемещений. Другой путь был бы следующий за основное положение принимается или выводится из какого-либо иного определения или условия принцип виртуальных перемещений следствием из него служит принцип Даламбера, а уже из последнего выводятся уравнения движения несвободной системы и выражения для реакций связей. Оба пути одинаково законны и правильны в обоих необходимо исходить из некоторого основного положения, явно или скрыто введённого в рассуждения. У нас, например, таким основным положением служит условие (30.9) на стр. 293  [c.355]


С этой точки зрения принцип Даламбера-Лагранжа может быть сформулирован следующим образом истинное движение из всех кинематически возможных выделяется тем, что для него и только для него в данный момент времени сумма работ активных сил и сил инерции на любых виртуальных перемещениях равна нулю.  [c.104]

Приведенная выше формулировка может быть распространена на динамические задачи о системе точек, для которой действующие силы и геометрические связи явно зависят от времени. С использованием принципа Даламбера, который состоит в том, что система может считаться находящейся в равновесии, если принимаются во внимание силы инерции, принцип виртуальной работы может быть распространен на динамические задачи аналогично статическому случаю, за исключением того, что в этом случае учитываются и члены, представляющие виртуальную работу сил инерции. Результат, полученный таким образом, интегрируется по времени i т t = ti до t = Используя интегрирование по частям и соглашение о том, что виртуальные перемещения в начальный и конечный моменты времени равны нулю,  [c.16]

Мы знакомы уже с одним из вариационных принципов механики — принципом Даламбера. Этот принцип исходит из произвольно выбранного мгновенного состояния системы, которое сравнивается со смежным ее состоянием, возникающим из предыдущего в результате виртуального перемещения (ср. 7). Напротив, те вариационные принципы механики, к изучению которых мы сейчас перейдем, являются интегральными принципами они позволяют рассматривать ряд последовательных состояний системы за конечный промежуток времени или, что то же самое, на конечном отрезке траектории и сравнивать их с соседними виртуальными состояниями, находящимися с ними в определенном соответствии.  [c.242]

Действие этого постулата не ограничивается областью статики. Он приложим также и к динамике, где принцип виртуальных перемещений соответствующим образом обобщается принципом Даламбера. Так как все основные вариационные принципы механики — принципы Эйлера, Лагранжа, Якоби, Гамильтона — являются всего лишь другими математическими формулировками принципа Даламбера, постулат А есть в сущности единственный постулат аналитической механики и поэтому играет фундаментальную роль Принцип виртуальных перемещений приобретает особое значение в важном частном случае, когда приложенная сила Fi моногенная, т. е. когда она получается из одной скалярной функции — силовой. В этом случае виртуальная работа равна вариации силовой функции LJ qi,. .., ( ). Так как силовая функция равна потенциальной энергии, взятой с обратным знаком, то можно сказать, что состояние равновесия механической системы характеризуется стационарностью потенциальной энергии, т. е. условием  [c.100]


Согласно принципу Даламбера, точки т, т, га",. .. находились бы в равновесии, если бы в положениях с, с, с",. .. они бы.гш бы под влиянием вторых из указанных выше сил, действующих по направлениям сЬ, с Ъ, . .. и пропорциональных этим малым отрезкам. Следовательно, согласно принципу виртуальных скоростей, сумма виртуальных моментов этих сил должна быть равна нулю для всех перемещений, совместимых со связями, или же, точнее, эта сумма никогда не может стать положительной.  [c.413]

Принцип виртуальных перемещений получился у нас, как частное следствие из принципа Даламбера. Обратно, если принцип виртуальных перемещений принять за исходную истину, из него как следствие получается принцип Даламбера. Действительно, согласно формуле (34.19) потерянные силы и реакции находятся в равновесии, а потому сумма их элементарных работ на любом виртуальном перемещении равна нулю. Но сумма элементарных работ реакций сама по себе равна нулю. Следовательно, равна нулю сумма элементарных работ потерянных сил, а это и есть, как мы видели, одно из выражений принципа Даламбера.  [c.355]

Если связи стационарны, то общее уравнение динамики представляет собой следствие принципа виртуальных перемещений и принципа Даламбера.  [c.431]

Если в гл. IV и в последующих главах мы, пользуясь методом кинетостатики, составляли затем уравнения равновесия методами геометрической статики, то теперь мы применили принцип виртуальных перемещений, т. е. самое общее теоретическое положение статики общее уравнение динамики можно, таким образом, назвать уравнением Даламбера — Лагранжа.  [c.389]

Соотношение (6 ), объединяющее два основных принципа механики, принцип виртуальных перемещений Лагранжа и принцип Даламбера, называется общим или универсальным уравнением механики.  [c.486]

I. Принцип виртуальных перемещений и уравнения Даламбера — Лагранжа  [c.90]

Далее существенный этап развития расчетных математических методов в механике связан с именем Даламбера (1717—1783), предложившего простой и общий метод составления уравнения движения системы. Широкое обобщение аналитические методы получили в трудах Лагранжа (1736—1783), выдвинувшего принцип виртуальных перемещений. Расширение принципа виртуальных перемещений мы находим в трудах русского математика М. В. Остроградского (1801 —1861). Вклад в динамику твердого тела внес С. А. Чаплыгин (1869—1947), а в аэродинамику — Н. Е. Жуковский (1847—1921), который был также выдающимся педагогом, ратовавшим за ясное и четкое выделение физической сущности механических задач и их решение.  [c.29]

Значение принципа Даламбера состоит в том, что он открывает возможность применения к решению динамических задач специфических методов аналитической статики и во многих случаях существенно упрощает решение этих задач. Принцип Даламбера оказывается полезным в задачах, где требуется определить силы реакции связей при движении системы (динамические реакции). Но кроме этих непосредственных практических приложений, принцип Даламбера оказывается связующим звеном между принципом виртуальных перемещений и важнейшими уравнениями движения в теории механических (и других) систем, о чем речь будет идти ниже.  [c.177]

Уравнение (4.40) носит название общего уравнения динамики и представляет собой запись одного из самых общих принципов динамического принципа виртуальных перемещений. Динамический принцип виртуальных перемещений, называемый еще принципом Даламбера — Лагранжа, может быть сформулирован так пусть система материальных точек и тел с идеаль-ными связями движется под действием активных сил. Тогда в каждый момент времени обращается в нуль сумма виртуальных работ активных сил и сил Даламбера. Этим истинное движение отличается от всех мыслимых, совместимых со связями и близких к истинному.  [c.195]

Основным принципом, на котором основано рассмотрение условий равновесия твердого тела так же, как и всех других вопросов теории равновесия, является принцип виртуальной работы. Он является частным случаем принципа Даламбера, из которого его можно получить, отбрасывая силы инерции. В связи с этим рассуждения, приводимые в настоящем параграфе, являются непосредственным следствием закона движения центра тяжести и закона площадей, разобранных в 13. Следует также отметить, что рассмотренные там виртуальные перемещения (параллельный перенос и поворот), очевидно, не противоречат неизменяемости формы твердого тела и соответствуют рассмотренным в предыдущем параграфе поступательному движению и вращению — двум составным частям произвольного движения твердого тела.  [c.167]


Нам могут возразить, что поскольку масса m на самом деле движется, то, казалось бы, нет основании рассматривать ее так же, как если бы она покоилась. На это возражение можно дать два ответа. Во-первых, движение есть явление относительное. Мы можем ввести систему отсчета, движущуюся вместе с телом, и наблюдать за телом из этой системы. Тогда тело будет действительно покоиться. Во-вторых, принцип Даламбера акцентирует внимание на силах, а не на движущемся теле, и равновесие данной системы сил можно рассматривать безотносительно к состоянию движения тела, на которое эти силы действуют. Согласно критерию равновесия для произвольной системы сил, должна обратиться в нуль полная виртуальная работа всех сил. Этот критерий использует виртуальные, а не реальные перемещения, и потому он равно применим и к покоящимся, и  [c.113]

Даламбер обобщил свои рассуждения о равновесии одной частицы на произвольную механическую систему. Принцип Даламбера утверждает, что любая система сил находится в равновесии, если мы добавляем к приложенным (активным) силам силы инерции. Это означает, что полная виртуальная работа всех приложенных сил и сил инерции равна нулю на обратимых перемещениях. Представляется удобным дать особое название силе, получающейся в результате сложения силы инерции 1 и заданной силы F, действующей на частицу. Мы назовем эту суммарную силу эффективной силой 1 и обозначим ее через F  [c.114]

Общее уравнение динамики называют также дифференциальным вариационным принципом Даламбера-Лагранжа. Вариационным принцип называется потому, что в (3) входят вариации — виртуальные перемещения. Название дифференциального принцип носит потому, что в нем сравнивается данное положение системы с ее варьированным положением в фиксированный, хотя и произвольный момент времени (синхронное варьирование, согласно п. 12).  [c.104]

Это уравнение справедливо для любого виртуального перемещения. Одновременно оно является обобщением принципа виртуальной работы в статике и принципа Даламбера для твердого тела. Важное значение имеет то, что это уравнение не содержит реакций связи. Впервые основное уравнение было получено в 1760 г. Лагранжем см. [4]. Оно является основным уравнением излагаемой нами теории. Мы представим его в нескольких различных формах и форму (3.1.1) будем называть первой формой основного уравнения.  [c.41]

Подставив эти значения ускорений в формулы (34.6) и (34.7), выражающие принцип Даламбера, мы приходим к выводу, что в положении равновесия системы сумма-элементарных работ активных сил на любом виртуальном перемещении должна равняться нулю в случае удерживающих связей и должна равняться нулю или быть меньше нуля, если среди связей есть н е у д е р ж и в а ю щи е, т. е. соответственно  [c.353]

Указанный принцип Даламбера — Лагранжа можно сформулировать также в форме принципа Гамильтона. Для этого нужно связать виртуальное перемещение с вариацией траекторий частиц. Пусть множество траекторий, полученных в результате вариации рассматриваемого движения х = ф(Х,/). имеет вид х=9(Х, I, е), где —1 <г< 1 и ф (X, 0) =  [c.40]

Уравнения Лагранжа (28.11) были получены из принципа Даламбера (28 2) путем исключения зависимых виртуальных перемещений с помощью формул (28 3), представляющих собой преобразование радиусов-векторов материальных точек системы к ее обобщенным координатам да Следует иметь в виду, что сам выбор обобщенных координат системы неоднозначен. Для одной и той же системы всегда можно указать несколько наборов независимых параметров, однозначно определяющих ее положение в пространстве и удовлетворяющих уравнениям связей. Последнее означает, что обобщенные координаты да какого-нибудь одного набора можно задать с помощью однозначных функций х параметров да и времени составляющих другой возможный набор обобщенных координат  [c.164]

Уравнения колебаний и одновременно граничные условия, соответствующие принятым кинематическим гипотезам, получим, используя принцип Даламбера, который для упругих систем формулируется следующим образом суммарная виртуальная работа внешних активных сил ЬАе, внутренних сил упругости М,- и сил инерции б/ равна нулю для всех обратимых виртуальных перемещений, совместных с заданными кинематическими условиями  [c.15]

Функции 9j, Фз, ф ,. .. найдем, как и выше, пользуясь принципом виртуальных работ совместно с принципом Даламбера. Принимая виртуальное перемещение  [c.300]

Рассматривая принцип Даламбера, мы ввели понятие силы инерции для всех материальных точек системы. Эти силы определяются как произведение масс точек и их ускорения, взятого с обратным знаком. После добавления сил инерции к активным и пассивным силам получаем равновесие сил в движущейся системе. Равновесие сил означает выполнение условия принципа виртуальных перемещений. Поэтому открывается возможность распространить принцип виртуальных перемещений, относящийся к статике, и на динамику.  [c.218]

Эти уравнения имеют такой же вид, как и в случае ста ционарных связей [ 143, уравнения (169)]. Применяя теперь принцип Даламбера и принцип возможных перемещений, приходим, как былогсказано в 133, к заключению, что сумма элементарных работ заданных сил, при.юженных к материальным точкам данной системы, сил инерции этих точек и реакций связей при всяком возможном (в случае стационарных связей) или при всяком виртуальном (в случае нестационарных связей) перемещении системы равна нулю. Если нестационарные связи являются, как ны предполагаем, совершенными, то сумма элементарных работ реакций этих связей при всяком виртуальном перемещении системы равна нулю, и мы приходим к тому же общему уравнению динамики, которое в 133 мы имели для случая стационарных связей  [c.550]


Принцип виртуальных перемещений получился у нас как следствие уравнений движения (36.4). Раньше, в 198, мы уже упоминали о том, что можно итти обратным путём — вывести из принщша виртуальных перемещений принцип Даламбера, а уж отсюда притти к уравнениям движения (36.4). Но при таком построении динамики надо или считать принцип виртуальных перемещений за основное положение, или доказать этот принцип, исходя из какого-либо другого положения, принимаемого за основное. Было сделано много попыток дать вполне строгое доказательство принципа виртуальных перемещений, но подобно тому, как при установлении уравнений (36.20) (т. е. точнее говоря, при выводе выражений для реакций) нельзя обойтись без некоторого основного определения или условия (о реакциях идеальных связей), точно так же всякое доказательство рассматриваемого принципа скрыто или явно заключает в себе подобное же условие или допущение по отношению к связям специального характера, а потому, строго говоря, доказательством, т. е. сведением лишь на раньше признанные истины, названо быть не может. Для примера мы рассмотрим в общих чертах ещё два доказательства принципа виртуальных перемещений доказательства Лагранжа и Ампера (Ampere).  [c.380]

Принцип Даламбера и уравнения Лагранжа. Виртуальным (бесконечно малым) перемещением системы называется произвольное бесконечно малое изменение ее конфигурации, согласующееся со связями, наложенными на нее в данный момент t. Виртуальным это перемещение называют для того, чтобы отличить его от действительного перемещения, происходящего за некоторый промежуток времени dt, в течение которого силы и связи могут измениться. Пусть система находится в равновесии, т. е. полная сила, действующая на каждую ее точку, равна нулю. Тогда будем иметь Г,- = О и, следовательно, произведение Fi-fifi, равное работе силы Fi на виртуальном перемещении 8ги также будет равно нулю. Сумма таких произведений, взятая по всем точкам системы, также должна быть равна нулю  [c.26]

В. А. Сана в статье Вариационные принципы в механике переменной массы (1956) сформулировал принцип виртуальных перемещений для общего случая системы точек переменной массы, получил принципы Даламбера, Гаусса, Гамильтона—Остроградского и из этих принципов вывел соответствующие уравнения двхтжения системы переменной массы.  [c.304]

Сразу же заметим, что это не вывод , поскольку в условиях принципа Даламбера-Лагранжа виртуальные перемещения рассматриваются при фиксированном состоянии и времени и никаких изменений скоростей не допускается, так что кинетическая и потенциальная энергии при виртуальных перемещениях должны оставаться неизменными. А что же тогда варьируется Согласно Э. и Ф. Коссера [48], ары руется действие, в котором плотностями являются функции Т и П (см. уравнение (21)) — действие движения и действие деформации соответственно. Это не единственный случай, когда одна и та же функция играет различные смысловые роли (см. ниже о двух ролях функции Гамильтона).  [c.31]

Действие. Принцип Гамильтона. Уравнения Лагранжа были получены ранее из уравнений Ньютона для системы связанных материальных точек с помощью принципа виртуальных перемещений и принципа Даламбера — Лагранжа. Однако уравнения Лагранжа можно получить из общего теоретического принципа, носящего название вариационного принципа экстремального (иногда стационарного) действия. (Он же называется принципом Остроград-ского — Гамильтона.) Принцип экстремального действия распространяется не только на механические, но и на квантово-механические системы, поля, поэтому он имеет важнейшее теоретическое значение.  [c.207]

Если связи стационариы, то общее уравнение дииамики представ-яет собой следствие принципа виртуальных перемещений и прин-ипа Даламбера.  [c.618]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Равенство (72.13) составляет содержание принципа Лагранжа — Даламбера при движении механической системы в неинерци-альной системе координат в неинерциальной системе координат, если на механическую систему наложены удерживающие идеальные связи, то сумма элементарных работ всех сил инерции, активных сил, переносных сил инерции и сил инерции Кориолиса, действующих на механическую систему на любом виртуальном перемещении, равна нулю в каждый данный момент времени.  [c.107]

Приобретя широкую известность, трактат Даламбера тем не менее не смог сыграть роли систематической сводки аппарата аналитической динамики материальных систем, ибо оказался лишь малоупорндоченным набором примеров на приложение принципа равновесия потерянных сил, не содержащим никаких методически стройных и единообразных приемов составления дифференциальных уравнений движения материальных систе.м. Главной причиной этого было то, что Даламбер не уделил внимания аналитическому оформлению того принципа статики системы, сочетание которого с принципом Даламбера только и дает возможность завершить составление упомянутых уравнений. Первым систематическим трактатом по аналитической механике систем материальных точек, подчиненных механическим связям, явился лишь трактат Лагранжа Аналитическая механика , вышедший первым изданием в 1788 году. Он сыграл основополагающую роль для дальнейшего развития той разновидности аналитической механики, которая опирается на комбинацию принципа виртуальных перемещений с црин-ципом Даламбера или с петербургским принц1гпом динамики системы.  [c.2]

Все принципы по форме своей разделяются на две категории на принципы дифференциальные и интегральные, К первым относятся принцип Даламбера (D Alembert), принцип виртуальных перемещений [принцип Лагранжа (Lagrange)J, принцип наименьшего принуждения. Все  [c.347]

Мы видим, что сумма элементарных работ потерянных сил на любом виртуальном перемещении соответственно равна нулю или не положительна, смотря по тому, будут ли все связи удерживающие или среди них есть и неудерживающие. Впоследствии ( 198) принцип Даламбера мы выразим в иной форме. Уравнение (34.6) называют общим урав-нениеммеханики.  [c.349]

Вывод уравнений движения твёрдого тела из принципа Даламбера. Уравнения движения твёрдого тела могут быть получены также с помощью любого из принципов, изложенных в главах XXXIV и XXXV. В виде примера покажем, как вывести эти уравнения иа принципа Даламбера. Согласно прйнципу Даламбера ( 197), если все связи неосвобождающие, то элементарная работа потерянных сил на любом виртуальном перемещении системы равна нулю [см. формулу (34.6) на стр. 349] t. е. мы имеем  [c.504]


Метод виртуального варьирования возник вместе с принципом возможных перемещений (принципом виртуальных скоростей Лагранжа (J. L. Lagrang)) и принципом Даламбера (J. d Alembert) при объединении их в единый принцип Даламбера-Лагранжа, дающий общее уравнение аналитической механики. С использованием понятия возможных перемещений задаются реакции связей, в частности с помощью известного критерия идеальности связей. Принцип возможных перемещений вначале применялся при решении задач статики как необходимое условие равновесия. Достаточность принципа виртуальных скоростей для равновесия могла быть доказана только в теории, описывающей движение, так как под виртуальной скоростью следует понимать скорость, которую тело, находящееся в равновесии, готово принять в тот момент, когда равновесие нарушено, т. е. ту скорость, какую тело фактически получило бы в первое мгновение своего движения... [51]. Здесь мы вместо термина возможное перемещение предпочитаем пользоваться термином виртуальное перемещение , чтобы избежать терминологического противоречия, указанного М. В. Остроградским [79] при нестационарных связях виртуальные перемещения в общем случае не являются возможными в смысле физической реализации (иначе получилось бы, что возможные перемещения не являются возможными). Термин виртуальные вариации применяем, следуя авторам работ [74, 101], чтобы подчеркнуть, что варьирование производится в соответствии с требованиями, налагаемыми на виртуальные перемещения. Совокупность способов получения виртуальных вариаций, правила выбора множества последних и условия их применения составляют метод виртуального варьирования.  [c.10]

В приведённую выше схему (в несколько более сложном варианте для физико-математических моделей, когда речь идёт как о физических свойствах, так и об их математическом описании) укладывается и развитие отдельных понятий. Уточнение смысла основных применяемых понятий дано в заметках первой главы работы. Дано обобщение понятия материальной точки (заметка 1), рассмотрены понятия скорости и ускорения (заметка 2), обсуждается соотношение виртуальных перемещений и вариаций, используемых в дифференциальных и интегральных принципах (заметка 3). Закон Ньютона о действии и противодействии получен как следствие принципа равновесия Даламбера и второго закона Ньютона. Прослеживается логическая цепь, соединяющая принцип равновесия Даламбера с уравнениями даламберова равновесия , использующими понятие о силе инерции. Предложено описание взаимодействия в форме интегрального равенства (заметка 4). Обсуждаются аналоги теоремы об изменении кинетической энергии для реономных систем и место функции Гамильтона в уравнении энергии  [c.12]

Своей Механикой Эйлер стремился расшифровать, разъяснить, упростить, развить, обобщить основные понятия и законы механики, созданной его предшественниками. В первую очередь — Ньютоном. Динамика Даламбера — это попытка радикальной перестройки основ механики, стремление к физической ясности ее понятий, предельной универсальности, всеобщности, наглядности и эффективности ее основополагающих принципов. Традиционный принцип виртуальных скоростей (перемещений) был прекрасным образцом основ теории равновесия тел. Поэтому идея его модернизации для нужд теории движения тел представляется вполне естественной. По потребовалась не столько модернизация математического содержания принципа, сколько пересмотр физического понятия равновесия, покоя. Пдея возможности уравновешивания, уничтожения некоторых динамических характеристик двигающегося тела в каждый момент времени связями (другими телами) оказалась очень перспективной. Пменно эту идею положил Лагранж в основу своего общего уравнения динамики, опубликованного в 1788 г.  [c.268]


Смотреть страницы где упоминается термин Принцип ДАламбера и принцип виртуальных перемещений : [c.307]    [c.354]    [c.349]    [c.264]    [c.40]    [c.75]    [c.297]   
Смотреть главы в:

Курс теоретической механики 1973  -> Принцип ДАламбера и принцип виртуальных перемещений



ПОИСК



Виртуальные перемещения

Голономные связи. Силы реакции. Виртуальные перемещения. Идеальные связи. Метод неопределенных множителей Лагранжа. Закон изменения полной энергии. Принцип ДАламбера-Лагранжа. Неголономные связи Уравнения Лагранжа в независимых координатах

Даламбер

Даламбера принцип

Динамический принцип виртуальных перемещений— принцип Даламбера —Лагранжа

ЛВС виртуальная

Принцип ДАламбера, принцип виртуальных перемещений и уравнения Лагранжа в обобщенных координатах

Принцип виртуальных перемещени

Принцип виртуальных перемещени принцип

Принцип виртуальных перемещений

Принцип виртуальных перемещений и уравнения Даламбера — Лагранжа



© 2025 Mash-xxl.info Реклама на сайте