Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип виртуальных перемещений и уравнения Даламбера — Лагранжа

I. Принцип виртуальных перемещений и уравнения Даламбера — Лагранжа  [c.90]

Если в гл. IV и в последующих главах мы, пользуясь методом кинетостатики, составляли затем уравнения равновесия методами геометрической статики, то теперь мы применили принцип виртуальных перемещений, т. е. самое общее теоретическое положение статики общее уравнение динамики можно, таким образом, назвать уравнением Даламбера — Лагранжа.  [c.389]


Соотношение (6 ), объединяющее два основных принципа механики, принцип виртуальных перемещений Лагранжа и принцип Даламбера, называется общим или универсальным уравнением механики.  [c.486]

Далее существенный этап развития расчетных математических методов в механике связан с именем Даламбера (1717—1783), предложившего простой и общий метод составления уравнения движения системы. Широкое обобщение аналитические методы получили в трудах Лагранжа (1736—1783), выдвинувшего принцип виртуальных перемещений. Расширение принципа виртуальных перемещений мы находим в трудах русского математика М. В. Остроградского (1801 —1861). Вклад в динамику твердого тела внес С. А. Чаплыгин (1869—1947), а в аэродинамику — Н. Е. Жуковский (1847—1921), который был также выдающимся педагогом, ратовавшим за ясное и четкое выделение физической сущности механических задач и их решение.  [c.29]

Уравнение (4.40) носит название общего уравнения динамики и представляет собой запись одного из самых общих принципов динамического принципа виртуальных перемещений. Динамический принцип виртуальных перемещений, называемый еще принципом Даламбера — Лагранжа, может быть сформулирован так пусть система материальных точек и тел с идеаль-ными связями движется под действием активных сил. Тогда в каждый момент времени обращается в нуль сумма виртуальных работ активных сил и сил Даламбера. Этим истинное движение отличается от всех мыслимых, совместимых со связями и близких к истинному.  [c.195]

Общее уравнение динамики называют также дифференциальным вариационным принципом Даламбера-Лагранжа. Вариационным принцип называется потому, что в (3) входят вариации — виртуальные перемещения. Название дифференциального принцип носит потому, что в нем сравнивается данное положение системы с ее варьированным положением в фиксированный, хотя и произвольный момент времени (синхронное варьирование, согласно п. 12).  [c.104]

Это уравнение справедливо для любого виртуального перемещения. Одновременно оно является обобщением принципа виртуальной работы в статике и принципа Даламбера для твердого тела. Важное значение имеет то, что это уравнение не содержит реакций связи. Впервые основное уравнение было получено в 1760 г. Лагранжем см. [4]. Оно является основным уравнением излагаемой нами теории. Мы представим его в нескольких различных формах и форму (3.1.1) будем называть первой формой основного уравнения.  [c.41]


Уравнения Лагранжа (28.11) были получены из принципа Даламбера (28 2) путем исключения зависимых виртуальных перемещений с помощью формул (28 3), представляющих собой преобразование радиусов-векторов материальных точек системы к ее обобщенным координатам да Следует иметь в виду, что сам выбор обобщенных координат системы неоднозначен. Для одной и той же системы всегда можно указать несколько наборов независимых параметров, однозначно определяющих ее положение в пространстве и удовлетворяющих уравнениям связей. Последнее означает, что обобщенные координаты да какого-нибудь одного набора можно задать с помощью однозначных функций х параметров да и времени составляющих другой возможный набор обобщенных координат  [c.164]

Действие. Принцип Гамильтона. Уравнения Лагранжа были получены ранее из уравнений Ньютона для системы связанных материальных точек с помощью принципа виртуальных перемещений и принципа Даламбера — Лагранжа. Однако уравнения Лагранжа можно получить из общего теоретического принципа, носящего название вариационного принципа экстремального (иногда стационарного) действия. (Он же называется принципом Остроград-ского — Гамильтона.) Принцип экстремального действия распространяется не только на механические, но и на квантово-механические системы, поля, поэтому он имеет важнейшее теоретическое значение.  [c.207]

Приобретя широкую известность, трактат Даламбера тем не менее не смог сыграть роли систематической сводки аппарата аналитической динамики материальных систем, ибо оказался лишь малоупорндоченным набором примеров на приложение принципа равновесия потерянных сил, не содержащим никаких методически стройных и единообразных приемов составления дифференциальных уравнений движения материальных систе.м. Главной причиной этого было то, что Даламбер не уделил внимания аналитическому оформлению того принципа статики системы, сочетание которого с принципом Даламбера только и дает возможность завершить составление упомянутых уравнений. Первым систематическим трактатом по аналитической механике систем материальных точек, подчиненных механическим связям, явился лишь трактат Лагранжа Аналитическая механика , вышедший первым изданием в 1788 году. Он сыграл основополагающую роль для дальнейшего развития той разновидности аналитической механики, которая опирается на комбинацию принципа виртуальных перемещений с црин-ципом Даламбера или с петербургским принц1гпом динамики системы.  [c.2]

Принцип виртуальных перемещений получился у нас как следствие уравнений движения (36.4). Раньше, в 198, мы уже упоминали о том, что можно итти обратным путём — вывести из принщша виртуальных перемещений принцип Даламбера, а уж отсюда притти к уравнениям движения (36.4). Но при таком построении динамики надо или считать принцип виртуальных перемещений за основное положение, или доказать этот принцип, исходя из какого-либо другого положения, принимаемого за основное. Было сделано много попыток дать вполне строгое доказательство принципа виртуальных перемещений, но подобно тому, как при установлении уравнений (36.20) (т. е. точнее говоря, при выводе выражений для реакций) нельзя обойтись без некоторого основного определения или условия (о реакциях идеальных связей), точно так же всякое доказательство рассматриваемого принципа скрыто или явно заключает в себе подобное же условие или допущение по отношению к связям специального характера, а потому, строго говоря, доказательством, т. е. сведением лишь на раньше признанные истины, названо быть не может. Для примера мы рассмотрим в общих чертах ещё два доказательства принципа виртуальных перемещений доказательства Лагранжа и Ампера (Ampere).  [c.380]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]


Принцип Даламбера и уравнения Лагранжа. Виртуальным (бесконечно малым) перемещением системы называется произвольное бесконечно малое изменение ее конфигурации, согласующееся со связями, наложенными на нее в данный момент t. Виртуальным это перемещение называют для того, чтобы отличить его от действительного перемещения, происходящего за некоторый промежуток времени dt, в течение которого силы и связи могут измениться. Пусть система находится в равновесии, т. е. полная сила, действующая на каждую ее точку, равна нулю. Тогда будем иметь Г,- = О и, следовательно, произведение Fi-fifi, равное работе силы Fi на виртуальном перемещении 8ги также будет равно нулю. Сумма таких произведений, взятая по всем точкам системы, также должна быть равна нулю  [c.26]

Метод виртуального варьирования возник вместе с принципом возможных перемещений (принципом виртуальных скоростей Лагранжа (J. L. Lagrang)) и принципом Даламбера (J. d Alembert) при объединении их в единый принцип Даламбера-Лагранжа, дающий общее уравнение аналитической механики. С использованием понятия возможных перемещений задаются реакции связей, в частности с помощью известного критерия идеальности связей. Принцип возможных перемещений вначале применялся при решении задач статики как необходимое условие равновесия. Достаточность принципа виртуальных скоростей для равновесия могла быть доказана только в теории, описывающей движение, так как под виртуальной скоростью следует понимать скорость, которую тело, находящееся в равновесии, готово принять в тот момент, когда равновесие нарушено, т. е. ту скорость, какую тело фактически получило бы в первое мгновение своего движения... [51]. Здесь мы вместо термина возможное перемещение предпочитаем пользоваться термином виртуальное перемещение , чтобы избежать терминологического противоречия, указанного М. В. Остроградским [79] при нестационарных связях виртуальные перемещения в общем случае не являются возможными в смысле физической реализации (иначе получилось бы, что возможные перемещения не являются возможными). Термин виртуальные вариации применяем, следуя авторам работ [74, 101], чтобы подчеркнуть, что варьирование производится в соответствии с требованиями, налагаемыми на виртуальные перемещения. Совокупность способов получения виртуальных вариаций, правила выбора множества последних и условия их применения составляют метод виртуального варьирования.  [c.10]

Сразу же заметим, что это не вывод , поскольку в условиях принципа Даламбера-Лагранжа виртуальные перемещения рассматриваются при фиксированном состоянии и времени и никаких изменений скоростей не допускается, так что кинетическая и потенциальная энергии при виртуальных перемещениях должны оставаться неизменными. А что же тогда варьируется Согласно Э. и Ф. Коссера [48], ары руется действие, в котором плотностями являются функции Т и П (см. уравнение (21)) — действие движения и действие деформации соответственно. Это не единственный случай, когда одна и та же функция играет различные смысловые роли (см. ниже о двух ролях функции Гамильтона).  [c.31]

Своей Механикой Эйлер стремился расшифровать, разъяснить, упростить, развить, обобщить основные понятия и законы механики, созданной его предшественниками. В первую очередь — Ньютоном. Динамика Даламбера — это попытка радикальной перестройки основ механики, стремление к физической ясности ее понятий, предельной универсальности, всеобщности, наглядности и эффективности ее основополагающих принципов. Традиционный принцип виртуальных скоростей (перемещений) был прекрасным образцом основ теории равновесия тел. Поэтому идея его модернизации для нужд теории движения тел представляется вполне естественной. По потребовалась не столько модернизация математического содержания принципа, сколько пересмотр физического понятия равновесия, покоя. Пдея возможности уравновешивания, уничтожения некоторых динамических характеристик двигающегося тела в каждый момент времени связями (другими телами) оказалась очень перспективной. Пменно эту идею положил Лагранж в основу своего общего уравнения динамики, опубликованного в 1788 г.  [c.268]


Смотреть страницы где упоминается термин Принцип виртуальных перемещений и уравнения Даламбера — Лагранжа : [c.75]   
Смотреть главы в:

Динамика неголомных систем  -> Принцип виртуальных перемещений и уравнения Даламбера — Лагранжа



ПОИСК



Виртуальные перемещения

Голономные связи. Силы реакции. Виртуальные перемещения. Идеальные связи. Метод неопределенных множителей Лагранжа. Закон изменения полной энергии. Принцип ДАламбера-Лагранжа. Неголономные связи Уравнения Лагранжа в независимых координатах

Даламбер

Даламбера принцип

Даламбера-Лагранжа)

ЛВС виртуальная

Принцип ДАламбера и принцип виртуальных перемещений

Принцип ДАламбера, принцип виртуальных перемещений и уравнения Лагранжа в обобщенных координатах

Принцип Даламбера и уравнения Лагранжа

Принцип Даламбера — Лагранжа Уравнения Лагранжа

Принцип Даламбера—Лагранжа

Принцип Лагранжа

Принцип виртуальных перемещени

Принцип виртуальных перемещени принцип

Принцип виртуальных перемещений

Уравнение Даламбера

Уравнение Даламбера — Лагранжа

Уравнение перемещений

Уравнения Лагранжа



© 2025 Mash-xxl.info Реклама на сайте