Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругие сварочное 3 - 358 -

Поле остаточных напряжений моделируется решением упругой задачи, исходными данными для которой являются начальные деформации, равные остаточным пластическим деформациям е , полученным при решении упругопластической или термодеформационной (если речь, в частности, идет о сварочных напряжениях) задач.  [c.201]

Этот вопрос решается посредством принятия допущения об одновременном выполнении каждого прохода по всей длине шва. В этом случае поле температур и напряжений становится однородным вдоль шва и задача сводится к двумерной. Такое допущение, в общем, вполне приемлемо именно при определении остаточных (не временных) сварочных напряжений в связи со следующими обстоятельствами. Формирование ОСН начинается с момента приобретения разупрочненным материалом упругих свойств. Следовательно, процессы деформирования, происходящие в районе источника сварочного нагрева, не оказывают влияния на ОСН и этот район можно исключить из рассмотрения. В области за источником нагрева, где материал приобрел упругие свойства, градиент температур вдоль шва уже незначительный и НДС здесь можно считать близким к однородному.  [c.280]


Пластические деформации зависят главным образом от тепловых характеристик процесса сварки, свойств металла и в значительно меньшей степени — от жесткости свариваемых элементов. Это обстоятельство позволяет разделить задачу определения сварочных напряжений и деформаций на две части. В первой части с помощью решения термодеформационной задачи МКЭ определяются пластические деформации, обусловливающие перераспределение объема металла в зоне упругопластического-деформирования при сварке (термодеформационная задача). Во второй части на основе решения задачи в рамках теории упругости определяются напряжения в сварном узле в целом (деформационная задача). Исходной информацией для решения деформационной задачи являются начальные деформации  [c.298]

Расчетное определение траектории трещины и интенсивности высвобождения упругой энергии при циклическом нагружении с учетом сварочных напряжений/Г, П, К а р з о в. В, А, К а р х и н. В, П, Леонов, Б, 3. М а р г о л и н//Пробл. прочности. — 1983. — № 9. — С. 104—109,  [c.374]

Образование сварочных деформаций и напряжений. Основными причинами образования собственных напряжений и деформаций в сварных соединениях и конструкциях являются неравномерный нагрев и охлаждение металла при сварке, структурные и фазовые превращения, механическое (упругое и пластическое) де( р-мирование при сборке, монтаже и правке сварных узлов и конструкций.  [c.33]

Ионизация холодной плазмы осуществляется весьма небольшим числом высокоскоростных электронов, соответствующих хвосту максвелловского распределения. Поэтому неупругих столкновений в сварочном столбе дуги обычно значительно меньше, чем упругих.  [c.44]

Положительное влияние вакуума на качество сварных соединений выражается в том, что значительно ускоряются и облегчаются процессы выхода газов и диссоциации оксидов не только в поверхностных, но и из внутренних слоев металла. Удаление кислорода и азота из сварочной ванны при электронно-лучевой сварке происходит тем полнее, чем больше упругость диссоциации оксидов и нитридов. Так, при сварке меди, кобальта, никеля в камере с разрежением 6,5-10 Па обеспечивается диссоциация оксидов этих металлов. Также диссоциируют нитриды алюминия, ниобия, хрома, магния, молибдена и некоторых других металлов с высокой упругостью диссоциации нитридов.  [c.401]


Параметры упругости металлов, используемые в расчетах сварочных деформаций и напряжений (например, Е — нормальный модуль упругости, G — модуль сдвига, К — объемный модуль, V — коэффициент Пуассона), в малой степени зависят от  [c.410]

Для решения задач по определению напряжений, возникающих в теле при неравномерном распределении температур, используется математический аппарат теории упругости. Принимая условие независимости свойств материала от температуры и используя закон Гука, определяющий линейную связь напряжений и деформации, удалось получить ряд решений применительно к нагреву различных конструкций. Однако сварочный процесс связан с изменением температуры в значительных пределах и, как  [c.417]

Более точные количественные соотношения при решении задач о сварочных деформациях и напряжениях могут быть получены лишь при помощи теории пластичности в условиях переменных температур. Математический аппарат теории пластичности основан на нелинейных зависимостях между компонентами напряжений и деформаций в пластической области. Поэтому здесь уже нельзя непосредственно пользоваться методом решения температурных задач в теории упругости, основанным на суммировании напряжений.  [c.418]

В процессе сварки измерительные приборы регистрируют наблюдаемую деформацию, вызванную суммарным воздействием температуры и внутренних сил (рис. 11.7). В соответствии с формулой (11-2) упругие и пластические деформации, вызванные внутренними силами, т. е. сварочными напряжениями, определяются как  [c.420]

Высокая прочность, упругость, антифрикционные свойства. Пружины, контакты, подшипники приборов Жаропрочные сплавы. Детали арматуры, приборов, работающие при повышенных температурах, контакты сварочных машин. До оОО С  [c.11]

Нагрев места соединения при сварке может производиться до различной степени ослабления связи между частицами металла. Во многих случаях достаточно нагреть металл до пластического (тестообразного или сварочного состояния, которое характеризуется почти полной потерей металлом упругих свойств и возникновением значительных пластических деформаций при небольших напряжениях. Металл переходит в пластическое состояние в определённом температурном интервале, носящем название сварочный жар". Температурный интервал сварочного жара является физической константой для каждого сорта металла. Для малоуглеродистой стали температурный интервал сварочного жара находится в пределах 1100—1300° С, что соответствует белому калению. При температуре сварочного жара металл имеет состояние, подобное воску при комнатной температуре.  [c.271]

Разрушающие амплитуды Оас местных условных упругих напряжений для металла сварных соединений (для рекомендованных техническими условиями режимов сварки и сварочных материалов) определяются экспериментально в соответствии с методическими указаниями. При отсутствии экспериментальных данных о сопротивлении циклическому разрушению металла сварных соединений величины Оас принимаются равными  [c.232]

На фиг. IV. 2, а представлена схема импульсной сварки с односторонним нагревом пленки. Листы пленки 4 к 5 укладываются на упругую плиту 6 (являющуюся одновременно теплоизолятором), помещенную на столе 7. Нагреватель 3 располагается на лобовой поверхности пуансона 1 и отделяется от него прослойкой теплоизоляции 2. Для получения сварочной точки включают электрический ток и одновременно прижимают пленку пуансоном 1 к столу. Этим способом можно сваривать пленку толщиной до 0,1 мм пленку толщиной до 0,2 мм сваривают импульсной сваркой с двусторонним обогревом (фиг. IV. 2, б).  [c.76]

Посмотрим теперь, что могло бы послужить значимым критерием, позволяющим прогнозировать склонность к растрескиванию в зоне термического влияния. Чтобы это сделать, надо сначала определить причины растрескивания. Растрескивание произойдет, когда навязанная степень деформации превысит деформационную способность материала например, если материал способен выдержать деформацию 10 %, то деформация, превышающая этот уровень, вызовет растрескивание. Зная величину коэффициента термического расширения, модуль нормальной упругости и характеристики сварочного  [c.275]


Таким образом, на стадиях проектирования, изготовления и монтажа сварных конструкций необходимо принимать меры по уменьшению влияния сварочных напряжений и деформаций. Нужно уменьшать объем наплавленного металла и тепловложение в сварной шов. Сварные швы следует располагать симметрично друг другу, не допускать, по возможности, пересечения швов. Ограничить деформации в сварных конструкциях можно технологическими приемами сваркой с закреплением в стендах или приспособлениях, рациональной последовательностью сварочных (сварка обратноступенчатым швом и др.) и сборочно-сварочных операций (уравновешивание деформаций нагружением элементов детали). Нужно создавать упругие или пластические деформации, обратные по знаку сварочным деформациям (обратный выгиб, предварительное растяжение элементов перед сваркой и др.). Эффективно усиленное охлаждение сварного соединения (медные подкладки, водяное охлаждение и др.), пластическое деформирование металла в зоне шва в процессе сварки (проковка, прокатка роликом, обжатие точек при контактной сварке и др.). Лучше выбирать способы сварки, обеспечивающие высокую концентрацию тепла, применять двустороннюю сварку, Х-образную разделку кромок, уменьшать погонную энергию, площадь поперечного сечения швов, стремиться располагать швы симметрично по отношению к центру тяжести изделия. Напряжения можно снимать термической обработкой после сварки. Остаточные деформации можно устранять механической правкой в холодном состоянии (изгибом, вальцовкой, растяжением, прокаткой роликами, проковкой и т.д.) и термической правкой путем местного нагрева конструкции.  [c.42]

Интерес представляет способ закрепления ДРД на поверхности шеек силами упругости и упорами, который не искажает размеры детали и исключает сварочно-термическое влияние на материал восстанавливаемой детали. Суть способа заключается в следующем.  [c.388]

Существует несколько методик определения временных и остаточных сварочных напряжений. Как правило, при определении деформаций и напряжений вводится ряд допущений, которые заключаются в том, что теплофизические характеристики металла, его модуль упругости Е принимаются не зависящими от температуры, а предел текучести и предел прочности <Тв — изменяющимися в соответствии с идеальной диаграммой упругопластического тела. Кроме того, принимается, что напряжения при сварке одноосны, поперечные сечения остаются в процессе деформирования плоскими, а температурное состояние в свариваемом элементе предельное.  [c.500]

Установка для сварки ультразвуком (рис. 20.5) состоит из электромеханического преобразователя 1 с обмотками, заключенного в металлический корпус 7, охлаждаемый водой трансформатора продольных упругих колебаний 6 сварочного наконечника 5и механизма давления 3, между которыми помещают свариваемые детали 4. Крепление колебательной системы производят с помощью диафрагмы 2 Трансформатор упругих колебаний вместе со сварочным наконечником представляет собой волновод.  [c.420]

Сварочный нагрев для ДСВ производится, чаще всего, индукционным способом. В принципе возможен, конечно, контактный нагрев током, проходящим через место контакта деталей, подлежащих сварке, а также радиационный и другие способы нагрева. В случае контактного нагрева процесс диффузионной сварки по своей природе полностью идентичен контактной сварке сопротивлением. Не принципиальное различие заключается в наличии вакуума и отсутствии пластической деформации при ДСВ. Вследствие использования упругих, а не пластических деформаций, при ДСВ к качеству подготовки и чистоте свариваемых поверхно-266  [c.366]

В книге изложена теория одного наиболее часто встречающегося типа трещин технологического происхождения, так называемых горячих трещин. Дефекты такого рода имеют первостепенное значение в сварочном и металлургическом производствах. Дан простой общий метод точного решения автомодельных динамических задач теории упругости. В качестве примеров рассмотрены некоторые контактные задачи и задачи о трещинах. Рассмотрена динамическая прочность толстостенных цилиндрических оболочек при статических, динамических и случайных нагрузках. Приведено точное решение пространственной задачи теории упругости для внешности эллипсоидального отверстия, находящегося в тяжелом полупространстве. Для наиболее интересных частных случаев получены общие условия устойчивости выработок. Предлагается теория горного удара, а на ее основе — некоторые меры, которые могут служить для управления этим явлением.  [c.4]

Остаточные сварочные напряжения представляют собой систему внутренних сил, находящихся в равновесии. При нарушении этого равновесия напряжения перераспределяются, что сопровождается упругими и иласт ическими деформациями в дополнение к сварочным деформациям, полученным ранее в процессе сварки. Поэтому при механической обработке сварных заготовок часто невозможно добиться высокой точности их размеров.  [c.252]

Максимальная температура обычной сварочной дуги, горящей в чистом гелии = 24,59 В), составляет 810X246 = 19 845°. При наличии в дуге паров других элементов эффективный потенциал уменьшается и соответственно снижается температура дуги. Поэтому возникает вопрос, почему же при сварке и резке плазменной струей в некоторых случаях получают температуру 30 000° и более. Это как будто противоречит вышеуказанному. Но в действительности никакого противоречия нет. Температура столба дуги-плазмы зависит от многих факторов, в том числе от упругих соударений частиц в ней. Чем их больше, тем выше температура. Представим себе, что мы каким-то путем (подачей газа по бокам столба или размещением дуги в постороннем магнитном поле) заставим столб дуги сжаться, т. е. уменьшить свое сечение. Так как сварочный ток не меняется, количество электродов, проходящих по сечению столба дуги, не изменится, а количество упругих и неупругих соударений увеличится. Плазма становится более высокотемпературной и в определенных условиях может достигать ранее указанных температур.  [c.134]


На рис. 5.5 представлены схемы выполнения сварки по суперпроходам, принятые при расчете ОСН. Последовательность наложения суперпроходов соответствовала последовательности выполнения проходов в реальном процессе сварки. Основной металл (перлитная сталь 12НЗМД) и аустенитный сварочный материал принимались для всех анализируемых соединений одинаковыми. Теплофизические свойства — теплопроводность X и объемная теплоемкость су — принимались независимыми от температуры, равными Я = 32,3 Вт/(м-град), су = 3,8-10 Дж/(м -град) для основного металла и i = 14,7 Вт/(м-град), су = 4,6- 10 Дж/(м -град) для аустенитного металла шва. Используемые при решении термодеформационной задачи зависимости температурной деформации е , модуля упругости Е (одинаковая зависимость для основного металла и металла шва) и предела текучести ат приведены соответственно на рис. 5.6. и 5.7. Так как аустенит не претерпевает структурных превращений, для него зависимости От и е от температуры на стадии нагрева и охлаждения одинаковые. Основной металл претерпевает структурные превращения, и, так как сварочный термический цикл далек от равновесного (большие скорости нагрева и охлаждения), температурный интервал Fe — Fev-превращения от T l до Ти (см. рис. 5.6) при нагреве не совпадает с интервалом  [c.282]

Высокие теплопроводность и теплоемкость алюминия требуют применения мощных источников тепла, а в ряде случаев подогрева. Высокий коэффициент линейного расширения и малый модуль упругости способствуют появлению значительных сварочных деформаций, что требует применения надежных зажимных приспособлений и устранения деформаций после свар Ки в ответственных конструкциях. В алюминии отсутствует пластическое состояние при нагреве и переходе из твердого в жидкое соетояние, при этом алюминий не меняет своего цвета, а в области температур более 400—450 С имеется провал прочности и пластичности, поэтому рекомендуется сварка на подкладках,  [c.134]

В сварочной лаборатории МВТУ им. Баумана разработан метод определения объемных остаточных напряжений в стыковых сварных соединениях большой толщины. Метод позволяет определять напряжения как в глубине сварного соединения (объемные напряжения), так и на его поверхности (двухосные напряжения). Сущность его состоит в следующем в сварном соединении большой толщины сверлят специальные ступенчатые отверстия, ориентированные по главным осям поля напряжений или под некоторым углом к ним. В эти отверстия помещают специальные цилиндрические вставки с наклеенными на их поверхность тензодатчиками сопротивления. Перед установкой в образец вставки тарируют на машине для испытаний на растяжение. Коме того, перед проведением измерения напряжений вставке сообщают определенный предварительный натяг, который дает возможность регистрировать его деформации обоих знаков. После установки вставки и снятия прибором показания соответствующего напряжения предварительного натяга из образца вырезают столбик с отверстием и вставкой. Затем снимают повторное показание прибора. Практика измерений показала, что оптимальными размерами вырезаемого столбика является размер АОХА мм. Увеличение этого размера ведет к увеличению степени осреднения искомого компонента напряжения, а его уменьшение — к усилению влияния отверстия на результат измерения деформации. По разности произведенных замеров определяют величину упругой деформации, вызванной снятием остаточных напряжений, и подсчитывают величину этих напряжений.  [c.215]

Коэффициенты концентрации деформации для стыковых и угловых швов сварных соединений малоуглеродистых и низколегированных строительных сталей, выполненных сварочными материалами, предел текучести которых выше предела текучести основного металла в первом приближении, идущем в занас, моншо определять по графическим зависимостям на рис. 9.11. Горизонтальные участки кривых соответствуют упругой области деформирования в зоне концентрации Кц = а а) и определяются согласно зависимостям (9.1), (9.2) и (9.3).  [c.175]

Винипласт — продукт переработки полихлорвиниловой с.молы, непрозрачная пластмасса темно-коричневого цвета применяется как конструкционный и антикоррозионный материал выпускается в виде листов, труб, стержней, сварочных прутков, пленок. Характеризуется винипласт высоким модулем упругости, хорошими сопротивляемостью ударным нагрузкам, электроизоляционными свойствами, свариваемостью, скдеиваемостью, хорошо поддается механической обработке, может подвергаться глубокой вытяжке, отличается высокой химической стойкостью растворяется в простых и сложных эфирах, в ароматических и галоидосодержащих углеводородах.  [c.261]

При внимательном рассмотрении явления растрескивания в условиях деформационного старения становится ясно, что непосредственной причиной образования трещины не обязательно является напряжение, остаточное или внешнее (приложенное), наиболее важным фактором оказывается скорее степень деформации, возникающей под действием этих напряжений. Чтобы вычислить максимальную степень деформации, порождаемой остаточным сварочным напряжением, можно допустить, что это напряжение эквивалентно пределу текучести, а деталь жестко закреплена. Если предел текучести равен примерно 700 МПа, а модуль упругости — примерно 2,1 X10 МПа, то полная релаксация напряжения может быть достигнута при деформации в 0,33 %. По данным, опубликованным Ro ketdyne [ЗО], в образцах, имитирующих зону термического влияний, при нагреве со скоростью 14-17 °С/мин до 870 °С напряжение срелаксировало бы только до 350 МПа  [c.284]

Рис. 27,3. Ультразвуковая сварка с нор-мальньш вцдом колебаний а — схема сварочного узла б — эгаора амплитуды смещения колебательной системы в — расположение вектора статического давления Per и динамического усилия F, ] — корпус преобразователя 2 — пакет преобразователя с обмоткой 3 — трансформатор упругих колебаний 4 — волновод i — свариваемые детали 6 — опора А — амплитуда смещения волновода Рис. 27,3. <a href="/info/7387">Ультразвуковая сварка</a> с нор-мальньш вцдом колебаний а — <a href="/info/451340">схема сварочного</a> узла б — эгаора <a href="/info/421764">амплитуды смещения</a> <a href="/info/19482">колебательной системы</a> в — расположение вектора <a href="/info/2445">статического давления</a> Per и динамического усилия F, ] — корпус преобразователя 2 — пакет преобразователя с обмоткой 3 — <a href="/info/93014">трансформатор упругих колебаний</a> 4 — волновод i — свариваемые детали 6 — опора А — <a href="/info/421764">амплитуда смещения</a> волновода
Springba k — Упругое последействие. (1) Упругое восстановление металла после действия нагрузки. (2) Степень тенденции металла к возвращению в первоначальную форму после операции формирования давлением. Это компенсируется переизгибом или вторичной дополнительной операцией формирования. (3) В сварке под давлением отклонение в сварочной машине, вызванное внезапным нарушением давления.  [c.1049]

Рассмотренный кратко термодеформационный цикл сварки, обусловливая появление уравновешенных упругих деформаций в зоне сварного соединения, приводит к возникновению остаточных сварочных напряжений в сварном соединении. В зонах, где должны происходить деформации сжатия, возникают растягивающие остаточные напряжения, а уравновешивающие их сжимающие напряжения соответственно появляются в зонах с деформацией растяжения. На величину и распределение остаточных напряжений кроме неравномерных деформаций изменения объема металла при охлаждении оказывают влияние и объемные изменения, протекающие ниже температуры распада аустенита. Эти изменения у различных сталей протекают по-разиому и зависят от содержания в стали углерода и легирующих элементов. На рис. 4 представлена схема распределения остаточных напряжений в сварном соединении. Уровень напряжений и размеры растянутых и сжатых зон зависят от условий сварки и состава свариваемой стали. По данным табл. 2 можно судить о роли состава стали в возникновении остаточных напряжений в сварном соединении. Экспериментально определенные величина и распределение остаточных напряжений в сварных соединениях труб с толщиной стеики 30—36 м.м из стали 15ХМ, выполненных ручной дуговой сваркой с получением металла шва близкого состава, приведены на рис. 5.  [c.408]


В примечании к выводам своей работы Законы сопротивления сварочного железа, основанные на результатах предварительных экспериментов (Duleau [1820,П), Дюло писал, что в соответствии с хорошо известной формулой найденное им квазистатическое значение модуля упругости приводит к значению скорости звука в железе, равному 5018 м/с ). Определению этого значения предшествовала описанная выше дискуссия, развернувшаяся вокруг различия между динамическими модулями, определенными Хладни и Бно. Могло бы и не быть предмета для дискуссии, если бы именно этот аспект экспериментальных результатов Дюло не был полностью игнорирован весьма часто приходится наблюдать подобные исторические ошибки ).  [c.268]

Томас Юнг первый показал (см. стр. 116), насколько значительным может быть динамический эффект нагрузки. Понселе, побуждаемый к тому современной ему практикой проектирования висячих мостов, входит в более подробное изучение динамического действия. Пользуясь диаграммами своих испытаний, он показывает, что до предела упругости железный брус способен поглотить лишь малую долю кинетической энергии и что в условиях удара легко могут быть вызваны остаточные деформацип. Для элементов конструкций, подвергающихся ударам, он рекомендует применять сварочное железо, дающее при испытаниях на растяжение сравнительно большое удлинение и способное поглотить, не разрушаясь, большее количество кинетической энергии. Понселе доказывает аналитически, что внезапно приложенная нагрузка вызывает вдвое большее напряжение, чем та же самая нагрузка, приложенная статически (с постепенным возрастанием до полной величины). Он исследует влияние продольного удара на брус и вызываемые таким ударом продольные колебания. Он показывает также, что если пульсирующая сила действует на нагруженный брус, то амплитуда возникающих при этом вынужденных колебаний может значительно возрастать в условиях резонанса, п этим объясняет, почему маршировка солдат по висячему мосту может оказаться опасной. Мы находим у него любопытное истолкование экспериментов Савара по продольным колебаниям стержней и обоснование того факта, что большие амплитуды и большие напряжения могут быть вызваны малыми силами трений, действующими по поверхности.  [c.110]

Привод вращения сварочных роликов обеспечивает передачу крутящего момента на один или два сварочных ролика. В шовных машинах общего назначения используют электродвигатель ЭПУ2-1302Е и червячно-конический редуктор, связанные упругой втулочнопальцевой муфтой и установленные либо внутри корпуса машины, либо вне его. Передача крутящего момента с выходного вала редукто-  [c.179]


Смотреть страницы где упоминается термин Упругие сварочное 3 - 358 - : [c.468]    [c.29]    [c.61]    [c.378]    [c.411]    [c.418]    [c.418]    [c.385]    [c.235]    [c.212]    [c.232]    [c.78]    [c.390]    [c.293]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.0 ]



ПОИСК



Упругие сварочное - Линейное расширение



© 2025 Mash-xxl.info Реклама на сайте