Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плазма холодная

Период осреднения 687 Плавление 875 Плазма холодная 875 Пластина с притоком тепла 889  [c.900]

Предположим сначала, что как пучок, так и плазма—холодные, т. е. можно пренебречь тепловым движением их частиц необходимое для этого условие выяснится ниже.  [c.321]

В работе [86] рассмотрено отражение б-импульса от поверхности раздела вакуум — плазма (холодная и однородная). Решение найдено в виде разложения по функциям Бесселя и Струве амплитуда отраженного сигнала осциллирует вокруг нуля, причем сигнал сильно растягивается во времени амплитуда заметно отличается  [c.144]


Поверхностное упрочнение металлов производят ударными волнами при использовании лазеров, генерирующих последовательности импульсов. У поверхности металла образуется слой плазмы. Плазма распространяется навстречу лазерному лучу, в результате чего рождается ударная волна. Поскольку луч представляет собой последовательность импульсов, возникает последовательность ударных волн. Воздействие волн на металлическую деталь оказывает в данном случае такое влияние, как при холодной обработке металла давлением.  [c.298]

Плазма генерируется в канале сопла, обжимается и стабилизируется его водоохлаждаемыми стенками и холодным плазмообразующим газом. Обжатие и охлаждение наружной поверхности  [c.12]

Ионизация холодной плазмы осуществляется весьма небольшим числом высокоскоростных электронов, соответствующих хвосту максвелловского распределения. Поэтому неупругих столкновений в сварочном столбе дуги обычно значительно меньше, чем упругих.  [c.44]

Теплопроводность плазмы также обусловлена движением частиц. Главную роль в переносе теплоты от более горячих участков плазмы к холодным играют электроны (благодаря большей тепловой скорости). Если вдоль некоторого направления существует перепад температур, то электроны с большими энергиями идут в одну сторону, а с меньшими — в другую.  [c.57]

В результате появляется поток тепловой энергии в сторону более холодных слоев плазмы, пропорциональный относительной величине перепада температур, т. е. температурному градиенту  [c.57]

В дуговом разряде при высоких давлениях газа также существует переход от холодного электрода к весьма горячей плазме. При низких давлениях, наоборот, — от сравнительно горячего электрода к холодному газу.  [c.69]

При сдвигании электродов разность потенциалов между ними перед самым соприкосновением приблизительно равна сумме Однако при тесном сближении столб дуги может смещаться в сторону и длина ее становится больше зазора между электродами. Напряжение при / 0,1...0,2 мм может вновь возрастать, поэтому при снятии кривой U =U 1 ) и экстраполировании ее на /д=0 надо это учитывать. Кроме того, и во многих случаях суш,ественно зависят от 1 . Выделение и из суммы также вызывает большие трудности. При высоких температурах плазмы, характерных для сварочных дуг, можно использовать зондовый метод. Зонды, например вращающиеся, перемещают с большой скоростью, чтобы они не успели расплавиться. Потенциал зонда регистрируют с помощью электронного осциллографа. Точно измерить разность потенциалов между холодным зондом и горячей плазмой достаточно сложно, поэтому нельзя определить и с точностью, большей, чем 1...2 В.  [c.70]


В связи с этим разрабатываются и находят промышленное применение (помимо электродуговой) другие методы плавки, в которых сохраняется принцип гарнисажной плавки в вакууме, но вместо электрической дуги - источника тепловой энергии используют энергию электронного луча или плазмы. Ведутся исследования по применению индукционного способа плавки титановых сплавов в так называемых холодных тиглях.  [c.312]

Целесообразно выбирать спектральные линии с сильно различающимися энергиями верхних уровней. Однако при разности энергий, превышающей несколько электрон-вольт, может оказаться, что линии с высокими потенциалами возбуждения излучаются преимущественно центральной горячей частью плазмы, а линии с низкими потенциалами возбуждения — и более холодными зонами.  [c.238]

Если отвлечься от внутренней структуры волны поглощения, то ее можно представить как гидродинамический разрыв, распространяющийся по газу с некоторой скоростью О. Выберем систему координат, в которой разрыв неподвижен. При переходе через разрыв холодный газ в результате поглощения лазерного излучения превращается в плазму. Газ с плотностью рь давлением р1 и удельной внутренней энергией в1 втекает в разрыв со скоростью О, т. е. со скоростью распространения волны по невозмущенному газу. Поглотив на разрыве поток лазерного излучения Р, газ приобретает параметры ра, р2, и скорость относительно разрыва Оа. Общие соотношения, выражающие законы сохранения массы, импульса и энергии при переходе через разрыв, в нашей системе координат имеют вид  [c.107]

По истечении этого времени горячая плазма уходит и заменяется новой, относительно холодной, приток которой должен быть обеспечен. Условие стационарности состоит в том, что за время удержания выделение термоядерной энергии должно быть достаточным для разогрева вновь поступающей плазмы и для компенсации потерь (происходящих в основном за счет тормозного излучения электронов в поле ядер). Из баланса мощности для условия стационарности получается уравнение  [c.589]

Как отмечено в гл. XI, 4, проблемы теплоизоляции и удержания плазмы вместе с проблемой получения сверхвысоких по земным масштабам температур являются главными трудностями на пути создания термоядерных установок. Как возникают в звездах высокие температуры, мы уже видели. Космические размеры и массы звезд дают решение проблемы теплоизоляции и удержания плазмы. Действительно, холодные периферические области звезды непосредственно не соприкасаются с горячим веществом недр  [c.603]

Пересечение кривой фазового равновесия кристалл-плазма в точке N оси ординат Ор обусловлено квантовыми эффектами и связано с тем, что при давлении, достигающем астрофизических величин, частицы вещества будут как бы вдавлены на наинизшие энергетические уровни, отвечающие Т = 0. Вблизи точки N возможно своеобразное холодное плавление кристалла, связанное с тем, что нулевая энергия вещества может оказаться больше энергии связи кристалла.  [c.220]

Л. практически не обладает глобальным магн. полем дипольной природы и является немагнитной, сравнительно непроводящей и холодной диэлектрич. сферой, поглощающей плазму солнечного ветра и потоки энергичных частиц, свободно падающих на её поверхность. Обтекая Л., солнечный ветер образует тень плазмы, протяжённость к-рои изменяется в зависимости от взаимной ориентации направления солнечного ветра и силовых линий межпланетного магн. поля. Величина глобального магн. поля на поверхности Л. не превышает 0,5 гамм. Напряжённость местного магн.. поля, объясняемого в осн. палеомагнетизмом, может 014 достигать в отд. случаях 100—300 гамм на материке,  [c.614]

Таким образом, при температурах полной ионизации плазмы Т = 100 000 К, плотность энергии излучения в ней становится преобладающей. Это приводит к трудностям адиабатной изоляции плазмы при температурах термоядерных реакций (Т 1 ООО 000° К). Если интенсивность излучения абсолютно черного тела определяется однозначно его температурой (закон Стефана—Больцмана), то плазма термически равновесна. Но плазма в редких случаях излучает как черное тело и лучистое равновесие нарушается из-за наличия холодных стенок. Стенки не только поглош,ают лучистую энергию, но н оказывают каталитическое и электрическое воздействие на процессы в плазме. Наличие градиента температуры у стенок вызывает концентрационную диффузию и местное равновесие может восстановиться лишь тогда, когда скорость реакции велика по сравнению со скоростью диффузии. И, наконец, нерав-новесность может быть вызвана и наличием магнитно-гидродинамических эффектов, обусловленных наличием заряженных частиц.  [c.233]


С ростом интенсивности лазерного излучения Ро возрастают температура и степень ионизации плазмы в зоне поглощения. Одновременно возрастает и тепловой поток из плазмы в сторону разрыва. Перед разрывом образуется зона прогрева. При равновесной температуре плазмы за фронтом светодетонационной волны свыше 10 эВ возникает отрыв электронной температуры Те перед фронтом волны от температуры Т холодного газа.  [c.114]

Обеспечение удовлетворительных условий процесса нанесения покрытий успешно достигается методами физического осаждения в вакууме. Наиболее отработаны для производственных процессов ионновакуумные технологии нанесения покрытий из плазмы электрического разряда с холодным катодом, основанные на методе конденсации ве-п(ества в вакууме с ионной бомбардировкой,  [c.248]

Принцип работы вакуумно-плазменной установки поясняется схемой, представленной на рис. 8.9. Поток ионов металла формируется из плазмы электродугового разряда с холодным катодом. К катоду прикладывается отрицательный потенциал. Под действием приложенного напряжения ускоренный плазменный поток направляется на подложку, где происходят физико-химические процессы конденсации ионов и нейтральных атомов и образование поверхностных слоев. При напылении осуществляется подача газа в вакуумную камеру, что приводит к плазмохимическим реакциям с получением нитридных, карбидных, кар-бонитридных покрытий, а также покрытий на основе других соединений. Выбор реагента газовой среды определяется задачей получения покрытия требуемого состава. Некоторые характеристики соединений, используемых в качестве нап[.1ляемых покрытий, приведены в табл. 8,1.  [c.249]

Поперечное сечение реактора-токама-ка показано на рис. 7.2. Термоядерные нейтроны уносят более 80% энергии, выделяющейся в реакции. Они проходят через внутреннюю стенку 2 вакуумной камеры и поглощаются во внещнем бланкете 4. Стенку 2, ограничивающую вакуумную полость токамака, принято называть первой стенкой, так как она первой воспринимает тепловой и радиационный потоки от плазмы. Размеры токамака и ресурс его работы во многом определяются материалом и размером первой стенки. В качестве материала для ее изготовления используют легированные стали, ниобий либо молибден, которые выдерживают тепловые потоки до (1 ч- 5) 10 Вт/м . При большей плотности теплового потока ресурс первой стенки оказывается недостаточным. Однако расширение вакуумной камеры с целью уменьшения плотности потока связано с увеличением размеров реактора и, следовательно, с большими затратами на его изготовление. Поэтому для защиты первой стенки используется вдув холодного газа между плазмой и стенкой и литиевая защита.  [c.283]

По оси струи на расстоянии менее 38 мм от места входа ее в слой отмечались пульсации температуры (равные примерно 100° С), особенно заметные, когда подводимая мощность превышала 1 кет. Видимо, из-за эжекции частиц струей плазмы происходили быстрое нарастание двухфазного (среда — частицы) пограничного слоя струи, смыкание ее газового факела и периодические отрывы его с образованием пузырей аналогично появлению пузырей при распространении в псевдоожи-женном слое турбулентных низкотемпературных газовых струй, наблюдавшемуся автором [Л. 350]. Уже поэтому закономерна пульсация температуры по оси струи — в зоне образования и движения пузырей. Следует отметить, что для восходящей высокотемпературной струи в более холодном псевдоожиженном слое эффект эжекции частиц может быть сильнее, чем в изотермическом слое, из-за быстрого уменьшения удельного объема плазменного газа при охлаждении. Это, видимо, позволяет интенсивно эжектировать даже тонкодисперсные частицы, которые в изотермическом слое увлекаются слабо. Улучшение условий эжекции подтверждаются измерениями авторов (Л. 472], показавшими, что давление в плазменной струе ниже входа ее в псевдоожи-женный слой значительно меньше статического давления в слое на уровне решетки, а также самим фактом очень быстрого охлаждения плазменной струи в псевдоожиженном слое, связанным, по нашему мнению, в первую очередь с увеличением большого количества тонко-дисперсных частиц, а не с радиационным обменом, которому сами авторы 1[Л. 472] отводят несколько преувеличенную роль, считая, что им обусловлена главная часть теплообмена струи в поперечном направлении . Во всяком случае в середине проводившегося процесса глубокого охлаждения струи с 6 000 до 80—100° С, когда температура тонкой, имевшей малую оптическую толщину струи была уже в пределах 1000—1500° С, не приходилось ожидать существенной теплоотдачи радиацией непосредственно от струи газа, тем не менее и эта  [c.63]

В. в п. в отсутствие магнитного поля. В отсутствие внешних электрич. и магн. полей ( 0 = 0, Яа=0) в изотропной холодной плазме существуют две моды собств. колебаний продольные и поперечные волны. (Диэлектрич, проницаемость плазмы е в отсутствие внеш. полей является скаляром.) Причиной продольных колебаний (J f ), наз. ленгмюров-с к и м и (плазменными колебаниями или волнами пространственного заряда), является электрич, иоле, вызываемое разделением зарядов. Частота этих колебаний не зависит от длины волны, т, е. нет дисперсии этих волн, и равна ленгмюровской частоте 1лектронов lXl = a) ,(,= Здесь п — плотность равновесной  [c.328]

В холодной (Г О) плазме в магн. поле F 0) могут наблюдаться пять ветвей колебаний (рис. 2). В случае распространения волн вдоль магн. иоля (/с li Нц) имеются одна мода продольных волн (ленгмюровские колебания) и четыре моды поперечных эл.-магн. колебаний, существующие в разных диапазонах частот (альвеновская, быстрая магнитозвуковая, обыкновенная и необыкновенная волны).  [c.329]

Функциональную основу Г. п., как правило, составляет газовый разряд (дуговой, тлеющий, высокочастотный, СВЧ-разряд, лазерный, пучково-плазменный). Для генерации плазмы пока ещё редко используется ионизация рабочего вещества резонансным излучением, но в будущем, в связи с развитие.м лазеров, такие Г. п. могут получить значит, распространение. Г. п., работающие на газах при давлениях, сравнимых с атмосферным, обычно наз. плазмотрона,ии. Г. п., работающие на газах низких давлений, как правило, входят в состав более крупных устройств, напр, двухступенчатых плазменных ускорителей или ионных источников. Если в плазмотронах одной из основных конструктивных трудностей является защита стенок газоразрядного канала от больших тепловых потоков, то в Г. п. пизкого давления возникает проблема предотвращения гибели за ряж. частиц на стенках. С этим борются, используя экранировку стенок магн. и электрич. полями (см. Ионный источник), а также совмещая ионизацию и ускорение в одном объёме, благодаря чему поток плазмы попадает преим. в выходное отверстие Г. п. (см. Ллаз-.пенные ускорители). В связи с задачами плазменной технологии большое внимание уделяется разработке Г. п., непосредственно генерирующих плазму из твёрдых веществ. Наиб, распространение для этих целей получили вакуумные дуги с холодным катодом. Воз-  [c.434]


КАТОДНОЕ ПЯТНО — небольшая, сильно разогретая и ярко светящаяся область на новерхности катода дугового разряда, через к-рую осуществляется перенос тока между катодом и межэлектродным пространством. К. LI. присуще всем видам дугового разряда. Характерный размер К. п. —10 см. Возникновение К, п. в процессе формирования дугового разряда обусловлено необходимостью переноса больн1их (10— А) токов через поверхность холодного и практически кеэмитирующсго проводника. Перенос тока осуществляется как ионами прикатодной плазмы, так и электронами, к-рые эмитируются из К. п, за счёт высокой темп-ры поверхности К. п. термоэлектронная  [c.246]

Форма аппроксимации ур-ния состояния звёздного вещества, к-рое используется при М. з,, зависит от полной массы звезды, стадии ее эволюции и положения рассматриваемой точки относительно центра звезды. В недрах звёзд с массой 1 ЗЯШо 10 на стадии термоядерного горения водорода, на к-рой они проводят si 90% времени своей жизни, ионная компонента плазмы представляет собой идеальный газ и для него выполняется Бойля — Мариотта закон. Для более массивных звёзд необходимо учитывать давление и уд. энергию излучения. Отклонения газа от идеальности, связанные в первую очередь с кулоновским взаимодействием, существенно влияют на ур-ние состояния при 5И < ЮТ . На стадиях эволюции, следующих за термоядерным выгоранием водорода, т. е. при высоких Г и р, кроме отклонений от идеальности необходимо учитывать вырождение электронного газа, давление к-рого намного превосходит давление газа ионов. Во внешних, относительно холодных слоях звёзд Т 10 —10 К) возможны неполная ионизация вещества, образование молекул и пыли. На наиб, поздних стадиях эволюции, когда вещество сильно уплотнено, возникает необходимость учитывать эффекты общей теории относительности.  [c.175]

В совр. расчётах Н. звёздного вещества учитываются все перечисл. процессы. Эти расчёты очень сложны опи включают не только вычисления сечений отд. процессов, но и определение населённостей многочисл. возбуждённых уровней атомов и ионов с учётом разл. поправок на отклонение от идеальности звёздной плазмы, В самых наружных слоях холодных звёзд существенный вклад в Н. может носить также тормозное поглощение и фотопоглощение отрицательными ионами (Н", G и др.), поглощение в спектральных полосах разл. молекул и поглощение частицами пыли.  [c.326]

Непрерывный оптический разряд (НОР) — стационарное поддержание плотной равновесной плазмы излучением лазера непрерывного действия (напр., СО -ла-зера) был предсказан теоретически и получен на опыте в 1970. По сравнению с традиц. способами поддержания плазмы с Г 10 000 К при помощи дугового, индукционного, СВЧ-раэрядов для подвода энергий к плазме оптич. способом не требуется конструктивных элементов электродов, индуктора, волновода. Световая энергия свободно передаётся на расстояние световым лучом. Это открывает возможность зажигания плазмы на расстоянии от лазера и в любых, даже труднодоступных местах. Если продувать холодный газ через горящий НОР, подобно тому, как это делается в дуговых и прочих генераторах непрерывной плазменной струи — плазмотронах, получается оптический плаз-  [c.449]


Смотреть страницы где упоминается термин Плазма холодная : [c.181]    [c.151]    [c.324]    [c.49]    [c.198]    [c.90]    [c.187]    [c.328]    [c.329]    [c.329]    [c.407]    [c.108]    [c.189]    [c.205]    [c.208]    [c.211]    [c.215]    [c.581]    [c.13]    [c.208]    [c.423]   
Механика жидкости и газа Издание3 (1970) -- [ c.875 ]



ПОИСК



Волны в холодной изотропной плазме

Диэлектрическая проницаемость бесстолкновитекьвой холодной плазмы

Неустойчивость пучков в плазме. Многопотоковая гидродинамика холодной плазмы

Плазма

Электромагнитные полны в мзгнитоактивной холодной плазме



© 2025 Mash-xxl.info Реклама на сайте