Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение излучающего газа

Течение излучающего газа в пограничном слое 442  [c.461]

Отметим важное свойство ньютонианских течений распределения давления по телу (5.2.1) или (5.2.2) и скоростей по линиям тока Ио( ) не зависят от физических свойств газа и определяются только формой тела. Это утверждение распространяется и на течение излучающего газа, если только не происходит его нагрева с заметным уменьшением плотности, так как и лучение влияет лишь на энтальпию (плотность) через уравнение адиабаты dh = qdt, где q — скорость притока тепла.  [c.130]


В данном разделе будет рассмотрен теплообмен, излучением в поглощающей, излучающей, но нерассеивающей серой среде, ограниченной двумя параллельными поверхностями, при заданном распределении температуры. Такая постановка задачи соответствует физической ситуации, когда теплообмен излучением происходит при течении высокотемпературного поглощающего и излучающего газа с высокой скоростью между двумя параллельными пластинами. На фиг. 11.5 представлена геометрия задачи и соответствующая система координат. Предположим, что границы т = О и т = То непрозрачные, серые, излучают и отражают диффузно, имеют степени черноты ei и ег, отражательные способности pi и р2 и поддерживаются при температурах Ti и Т гхо-ответственно. Распределение температуры в среде между границами Г(т) задано. Требуется найти плотность потока результирующего излучения в сред-е.  [c.438]

Ниже приводятся основные уравнения движения и энергии Для излучающего газа, рассмотрено, какие упрощения могут быть сделаны в случае течения в пограничном слое, н.а типичных примерах проиллюстрирована математическая формулировка задачи о совместном действии конвекции и излучения в пограничном слое, обсуждены методы решения и результаты. В связи с тем что при рассмотрении радиационного теплообмена основ-, ное внимание будет уделено получению общего решения уравнений пограничного слоя, соответствующие течению в пограничном сЛое упрощения и автомодельные решения будут приведены только для двумерного установившегося пограничного слоя с излучением. Однако преобразованные уравнения двумерного пограничного слоя будут представлены в обще,м виде, так что из них можно будет легко получить некоторые частные случаи. Для простоты анализ будет проведен только для серого газа и ламинарного режима течения. Распространение этих результатов на случай несерого газа потребует лишь учета в радиационной части задачи селективности излучения.  [c.525]

Во многих случаях дифференциальные уравнения в частных производных ламинарного пограничного слоя могут быть заменены системой обыкновенных дифференциальных уравнений посредством введения новых переменных, называемых автомодельными переменными. Шлихтинг [27] приводит исчерпывающий анализ преобразований подобия уравнений пограничного слоя для сЛучая течения неизлучающего газа. В работе [39] описано приложение теории однопараметрических групп (развитой в [40]) для уменьшения числа независимых переменных в системе дифференциальных уравнений в частных производных. В этом разделе будет описано преобразование уравнений стационарного двумерного пограничного слоя при ламинарном обтекании клина сжимаемой излучающей жидкостью. Из этих общих преобразованных уравнений для клина легко получить соответствующие уравнения для течения на плоской пластине и в окрестности передней критической точки.  [c.536]


Асимптотические методы нашли применение в большинстве разделов аэрогидродинамики. Их использовали для решения задач о течениях невязкой жидкости для всего диапазона значений числа М G [О, оо), в теории крыла, теории звукового удара и теории вязких течений при Де оо и Де О и, наконец, для течений излучающего, релаксирующего и вообще реального газа.  [c.14]

Существенно усложняется картина течения излучающего и поглощающего газа в ударном слое, когда поле излучения начинает взаимодействовать с полем течения. В результате этого взаимодействия изменяется профиль полной энтальпии поперек ударного слоя (см. рис. 16.5), который перестает Рис. 16.5. Схема обтекания ть адиабатным, изменяются также сферы профили всех физических параметров  [c.404]

При наличии термодинамического и термохимического равновесия в ударном слое систему уравнений (16.1). .. (16.13) можно существенно упростить, воспользовавшись методом полных коэффициентов. В этом случае течение излучающего и поглощающего газа в окрестности передней критической точки затупленного тела, где ударный слой можно считать плоским, описывается следующей системой дифференциальных уравнений  [c.405]

Уширение линий, обусловленное взаимодействием излучающих атомов со средой, в сильной степени зависит, естественно, от свойств этой среды и имеет совершенно различный характер в газах, жидкостях и в твердых телах. Мы разберем сравнительно простой случай разреженных газов, где взаимодействие происходит в течение сравнительно кратковременных столкновений, длительность которых значительно меньше времени свободного пробега. В таких условиях излучение будет, очевидно, иметь вид последовательности цугов, причем их длительность определяется процессами в момент столкновения.  [c.741]

В настоящем разделе рассматривается методика определения распределения температуры в полупрозрачном теле, разрушающемся под действием теплового потока, подводимого извне к граничной поверхности. Для общности предположим, что среда является излучающей, поглощающей и изотропно рассеивающей. На фиг. 12.7 представлена геометрия задачи и система координат. Рассматривается полубесконечное тело (О < д < оо), которое разрушается вследствие нагрева с поверхности раздела газ — жидкость. При стационарном процессе уноса массы температура поверхности раздела Го является максимальной и по мере удаления от поверхности раздела температура тела падает. Излучение, испускаемое внутренними слоями вещества и достигающее поверхности раздела жидкость — воздух, частично пропускается, а частично отражается ею, причем предполагается, что эта поверхность отражает идеально зеркально. Если в течение некоторого времени унос массы происходит с постоянной скоростью и неустановившаяся стадия процесса пройдена, то  [c.511]

В этом разделе рассматривается влияние излучения на теплообмен в ламинарном пограничном слое при обтекании плоской пластины поглощающим и излучающим сжимаемым газом. Принимается, что газ является идеальным и серым, вязкость его линейно зависит от температуры, удельная теплоемкость и число Прандтля постоянны, температура внешнего потока Гоо также постоянна. Поверхность пластины является непрозрачной и серой, диффузно излучает и диффузно отражает и непроницаема для газа. К стенке подводится извне постоянный тепловой поток с плотностью qw На фиг. 13.6 схематически изображена картина течения и показана система координат.  [c.553]

ИЛ. ТЕЧЕНИЕ КУЭТТА ИЗЛУЧАЮЩЕГО И ПОГЛОЩАЮЩЕГО ГАЗА  [c.582]

Таким образом, при отсутствии внешних воздействий в результате спонтанного излучения число возбужденных атомов убывает со временем по экспоненциальному закону. Промежуток времени т=1/Л21, в течение которого N2 уменьшается в е раз, равен среднему времени жизни атома в возбужденном состоянии. По такому же экспоненциальному закону (9.30) должно убывать со временем свечение газа возбужденных атомов. Напомним, что радиационное затухание колебаний классического осциллятора формально описывается точно таким же законом (см. 1.5). Однако физический смысл времени жизни т в этих случаях совершенно различен. Согласно классической электродинамике, все излучающие осцилляторы одновременно совершают затухающие колебания и время т одинаково для всех. По квантовым представлениям, спонтанное излучение — это совокупность независимых переходов один из возбужденных атомов может вернуться в основное состояние через короткий промежуток времени, другой может прожить в возбужденном состоянии значительно дольше, но среднее для большой совокупности атомов время жизни т имеет вполне определенную величину.  [c.438]


Комарек А., Методика исследования теплообмена при течении излучающего газа, канд. диссертация, МЭИ, 1963.  [c.309]

Рассмотрим другие двухшаговые схемы типа Лакса — Вендроффа и их приложения. Рубин с соавторами [1967] брал схему Бёрстейна (5.82) для расчета одномерного течения излучающего газа. Уоткинс [1970] разработал новую двухшаговую схему решения жестких уравнений (см. разд. 3.6.5), описывающих течения, в которых происходят химические реакции. Кенцер [19706] экспериментировал, ироводя расчеты течения без скачков при помощи различных весовых комбинаций и различных чередований схемы Лакса и схемы чехарда подобно тому, как это сделано в схеме Рихтмайера (5.79).  [c.378]

Поэтому при исследовании тепло- и массопереноса в излучающем и поглощающем газе, обтекающем поверхность тела, делается допущение, что ударный слой является вязким, а давление поперек него не изменяется. В этом случае с учетом допущения (16.28) систему дифс1зеренциальных уравнений, описывающую течение излучающего газа за ударной волной, можно свести к системе дифференциальных уравнений пограничного слоя (16.1). ..  [c.405]

Таким образом, в общем случае течений излучающего многокомпонентного химически реагирующего газа необходимо решать одно скалярное уравнение неразрывное и для всей смеси в целом, ц — v — 1 скалярных уравнен т сохранения массы компонентов, v уравнений для концентраций химических элементов, одно векторное уравнение (или три скалярных) для определения компонент скорости, одно скалярное уравнение сохранения энергии, интегродиффе-ренциальное уравнение для определения спектргльной плотности энергетической яркости, р, — 1 векторных уравнений (или Зр — 3 скалярных) для определения плот ности диффузионного потока компонентов с учетом двух алгебраических соотношений для с и Ja, уравнение состояния  [c.186]

Рассмотрим стационарное полностью развитое течение прозрачного газа внутри круглой трубы при равномерно распределенной плотности теплового потока на стенке qy,. Координата входного сечения трубы х = 0 газ во входном сечении имеет постоянную температуру Tgi и нагревается до средней температуры Tg2 на выходе x — L). На фиг. 7.2 представлены схема течения для рассматриваемой задачи и система координат. Подводимый к стенке тепловой поток отводится от внутренней поверхности трубы конвекцией и излучением, а наружная поверхность теплоизолирована. Температура окружающей среды вблизи открытых концов трубы (х = О и л = L) соответственно равна T l и Гг. Внутренняя поверхность трубы непрозрачная, серая, диффузно излучающая и диффузно отражающая, имеет постоянную степень черноты е. Прёдполагаетсяу что справедлив закон Кирхгофа.  [c.259]

В работах [4, 5] было исследовано влияние излучения на теплообмен при течении Куэтта излучающей и поглощающей жидкости, а в [6, 7] рассмотрено течение пробки излучающего и поглощающего газа в канале и полностью термически развитое ламинарное течение между двумя параллельными диффузно излучающими и диффузно отражающими изотермическими бесконечными пластинами. Автор работ [8, 9] исследовал влияние излучения на характеристики ламинарного течения излучающей и поглощающей жидкости с постоянными свойствами при параболическом профиле скорости между двумя параллельными пластинами и в трубе. Течение пробки газа между двумя параллельными пластинами исследовалось в [10] при этом для решения радиационной ча сти задачи было использовано приближение Шустера — Шварцшильда. Исследованию теплообмена на тепловом начальном участке при течении излучающей и поглощающей жидкости в трубе в приближении серого и несерого газа при параболическом профиле скорости посвящены работы [И, 12]. Авторы [13, 14] исследовали теплообмен при турбулентном течении излучающего и поглощающего серого газа в трубе в условиях, когда газ является оптически тонким, а в работе [15] приведены экспериментальные и теоретические результаты по теплообмену при полностью развитом течении несерого излучающего газа в трубе. Задача нахождения распределения температуры на тепловом начальном участке для ламинарного течения в трубе была решена в общем виде методом  [c.581]

Указанные три модели излучающего слоя подразделяются далее в зависимости от характера учета взаимодействия поля течения газа с лучистым переносом энергии. Это связано с существенной неадиабатично-  [c.288]

Сформулированная выше задача о совместном действии конвекции и излучения была решена численно в работе [38] для течения поглош,аюш,его и излучаюш,его газа как в точной постаг новке, так и с использованием приближений оптически тонкого и толстого слоев. Позднее была решена аналогичная задача для поглощающего, излучающего и изотропно рассеивающего газа в точной постановке с использованием метода разложения по собственным функциям Кейса [42]. На фиг. 13.7 приведены профили температуры в пограничном слое для случая адиабатической стенки при нескольких значениях параметра g и при Рг = 1, Еоо — 2,0, ею = 1, yv = 0,5. Профиль температуры для == О соответствует случаю неизлучающего газа. Заметим, что при отсутствии излучения температура в пограничном слое максимальна. Излучение приводит к уменьшению максимума температуры в пограничном слое, обусловленного вязкой диссипацией энергии. По мере возрастания параметра максимум температуры уменьшается и профиль становится более пологим. При значениях этого параметра порядка 10- или меньше пограничный слой в рассматриваемой задаче можно считать оптически тонким. В этом диапазоне значений I решение, полученное в приближении оптически тонкого слоя, достаточно хорошо согласуется с точным. Однако необходимо проявлять осторожность при использовании приближения оптически тонкого слоя в за-  [c.561]


В этом разделе будет проанализирована роль излучения при не полностью термически развитом течении пробки поглощающего, излучающего и изотропно рассеивающего газа между двумя бесконечными параллельными пластинами, отстоящими друг от друга на расстоянии 2L. Для точного решения радиационной части задачи будет использован метод разложения по собственным функциям. Пробка однородного газа, имеющего температуру Го, входит в нагреваемую часть канала, начинающуюся при X = 0. При X > О стенки поддерживаются при некоторой постоянной температуре Т . На фиг. 14.4. показана схема течения и система координат. Пластины считаются непрозрачными, серыми, диффузно излучающими и зеркально отражающими. Кроме того, примем, что степени черноты обеих пластин одинакавы и выполняется закон Кирхгофа. Такая задача была решена в работе [18]. Ниже удут даны постановка задачи, обсуждение метода решения и некоторые результаты.  [c.590]

Будем далее рассматривать конвективное течение в плоском вертикальном слое излучающей и поглощающей несерой среды (конкретно речь будет идти о газе, поскольку в жидкостях радиационные эффекты, как правило, мало существенны). Границы слоя х = h поддерживаются при  [c.197]

Подробное исследование влияния на устойчивость течения в вертикальном слое радиационных эффектов и продольного стабилизирующего градиента температуры проведено в работе [6]. Рассматривалась излучающая и поглощающая, несерая и нерассеивающая среда (газ Рг = 0,7) в слое между изотермическими границами разной температуры с учетом их радиационных свойств. Определена зависимость критического числа Грасгофа и параметров критических возмущений от числа Планка, оптической толщины слоя, параметров несерости среды и черноты стенок в широком диапазоне изменения безразмерного продольного градиента температуры. Приводятся также результаты численных расчетов двумерных конвективных структур в слоях конечной высоты эти результаты демонстрируют образование системы вихрей при потере устойчивости основного течения.  [c.289]

Рассмотрим теперь распределение энергии в спектре излучения ксеноновых ламп. Спектральная плотность КПД излучения лампы определяется отношением излучае.мой ею световой энергии в единичном спектральном интервале к электрической энергии, рассеиваемой в разряде. Для квазистационарной стадии разряда излучаемая энергия может быть найдена из выражения (2.4) по экспериментально измеренным значениям температуры, оптической толщины kid лампы и длительности излучающего импульса. Для импульсных разрядов, в которых газодинамические явления, связанные с развитием разряда или движением масс газа в лампе, занимают значительную часть или весь импульс излучения, определение излучае.мой лампой энергии таким способом недостаточно корректно и приводит к заметным погрешностям. Отметим, что температура плазмы, как и плотность тока в разряде, могут меняться в течение импульса. Соответственно спектр излучения лампы также будет испытывать изменения во времени.  [c.65]

В свободном неоднородном звуковом поле в отсутствие препятствий и границ радиационные силы вызывают движение газа и жидкости. Импульс волны, передаваемый за счет поглощения звука в среде, идет на образование течения. В начальной стадии после включения звука происходит ускорение среды, приводящее к установлению стационарного движения газа или жидкости. Это движение называют акустическим течением или акустическим ветром. На рис 5.3 показан характер акустического течения на частотах ультразвукового диапазона (несколько МГц). Такое течение принято называть эккартовским, поскольку его теория была развита Эккар-том 120]. Как видно из рисунка, излучающая пьезоэлектрическая пластинка занимает только частьповерхности кюветы, заполненной жидкостью. При включении звука жидкость в сосуде начинает приходить в движение. Его нетрудно наблюдать, если поместить в жидкость немного алюминиевого порошка и сбоку осветить жидкость через прозрачную стенку кюветы. По прошествии некоторого времени движение жидкости устанавливается и имеет вид течения с противотоком. Такое акустическое течение было бы невозможно, если бы пьезопластинка закрывала всю левую поверхность кюветы (или трубы), так как тогда не было бы противотока жидкости и не выполнялся бы закон сохранения массы. Однако, вообще говоря, в случае неоднородного распределения амплитуды по фронту волны незначительное акустическое течение в принципе возможно, а вблизи стенок, в пограничном слое, оно возникает и в случае однородного по фронту звукового поля (см. ниже). Из рис. 5.3 следует, что масштаб вихрей эккартовского течения порядка объема кюветы и он существенно больше длины звуковой волны X радиус ультразвукового пучка также значительно больше X.  [c.135]

В процессе исследования контролировались следующие параметры звукового поля посредством бесконтактного виброметра амплитуда смещения излучающей поверхности (на частотах 10, 15, 22 и 80 кз1 ) звукоприемником волноводного тина [85] или обычными приемниками со сферическими и плоскими чувствительными элементами из керамики титаната бария [86] амплитуда звукового давления на частотах 500 и 1000 пгц измерялось радиационное давление, причем последнее пересчитывалось па излучаемую акустическую мощность. При исследовании процесса выделения газа из жидкости проба воды определенного объема с известным начальным содержанием газа озвучивалась в соответствии с акустическими условиями в реакционном объеме стакана 4 (см. рис. 34) или в трубе 4 (см. рис. 35), а затем через тройник 3 поступала в реакционную колбу 9, где и измерялось содержание певыделившегося при озвучивании газа. Зная начальную концентрацию газа в жидкости Сд и концентрацию в момент времени —С , можно оцепить количество газа, выделившегося за время в виде разности Сд—Сх. Озвучивая жидкость в течение различных промежутков времени tg,. .. и можно найти соответствующие значения С -, Сд,. . . и С,, и Сд—С , Сд—С , Сд—С . .. И Сд—С., Т. е. получить экспериментальный закон изменения во времени концентрации газа в жидкости t) или количества выделившегося газа Сд—С. t).  [c.301]

В 1анных о работе оборудования приводят чертеж — план расположения оборудования, наименование, марку или тип, краткую характеристику оборудования, выделяющего токсичные газы, пыль, жидкости, с указанием номера по технологическому плану, площадь поверхности оборудования, излучающего теплоту, род топлива и его теплоту сгорания, среднечасовой расход топлива, зеркало испарения жидкостей, рекомендуемые устройства для удаления токсичных газов, пыли и жидкостей, количество воздуха, забираемого из помещения для дутья, сушки и др., характер воздуха приточной вентиляции, продолжительность работы оборудования в течение суток, данные для проектирования местных отсосов от технологического оборудования.  [c.172]

На рис. 3.8 показано устройство высокотемпературного стабильного источника излучения на основе экзотермического химического заряда [64]. В реакции участвуют железо, никель и окись кобальта с магнием. Компоненты (О в виде смешанного и спрессованного нод высоким давлением порошка помещаются в корпус (2), выполненный из графита. Толщина стенки корпуса существенно влияет на эффективность излучения помехи, которая уменьшается из-за образующихся в стенке нрогаров и утечки газов. Толщина стенки влияет также на излучающую способность и скорость нарастания температуры. Для зажигания заряда требуется высокая температура в течение нескольких секунд. Для этого в устройстве имеется запал (5), к которому от разъема  [c.67]



Смотреть страницы где упоминается термин Течение излучающего газа : [c.443]    [c.562]    [c.11]    [c.394]    [c.582]    [c.29]    [c.416]    [c.384]   
Физическая газодинамика реагирующих сред (1985) -- [ c.0 ]



ПОИСК



Газа течение

Течение Куэтта излучающего и поглощающего газа

Течение газов

Течение излучающего газа пограничном слое



© 2025 Mash-xxl.info Реклама на сайте