Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Режимы с растяжением

В условиях неизотермического нагружения, когда полуцикл растяжения протекает в высокотемпературной части цикла нагрева, особенно повышается роль пластичности. Показательны в этом отношении данные, приведенные на рис. 3, б и полученные в разных контрастных условиях неизотермического нагружения. Например, сравнение кривых 5 и б на рис. 3, б показывает, что более сильное охрупчивание сплава при 973 К приводит к существенному (до трех раз) снижению долговечности в сравнении с аналогичными данными для температурного режима с максимальной температурой 1133 К. Характерно, однако, что уровень располагаемой пластичности, по-видимому, на сопротивление малоцикловой усталости влияет незначительно, если полуцикл сжатия механического нагружения приходится на диапазон высокотемпературной части термического цикла нагрева. Об этом свидетельствует близость данных по малоцикловой неизотермической усталости (см. рис. 3, б, кривые 1—4).  [c.39]


Параллелограммное устройство с образцом устанавливают в испытательную машину, работающую в режиме переменного растяжения. При осевом растяжении в двух совпадающих с направлением внешней нагрузки плечах образца возникают деформации растяжения, в двух других — деформации сжатия. Соотношение усилий во взаимно перпендикулярных плечах образца зависит от отношения длин диагоналей или (что то же самое) от отношения углов при двух смежных вершинах параллелограмма.  [c.36]

В случае попеременного растяжения и сжатия величина ej равна арифметической сумме вязкопластических деформаций, накапливающихся каждый раз сначала в прямом, а затем в обратном направлениях. Так как ползучесть сталей при сжатии протекает примерно с той же скоростью, что и при растяжении, то согласно (5.22) скорость повреждений при сжатии должна быть примерно той же, что и при растяжении. Это противоречит, однако, результатам опытов (см. п. 4.1), согласно которым накопление повреждений при сжатии протекает очень медленно по сравнению с растяжением или даже совсем не имеет места. Таким образом, при расчете повреждений при знакопеременных режимах нагружения в формулу (5.21) следует вносить только приращения деформаций удлинения.  [c.202]

Испытания на термическую усталость проводили после наклепа О, 3, 10 и 20% путем деформации растяжением, а также после такого же наклепа и последующей термообработки по двум режимам с температурами 950 и 1100° С, выдержкой 20 мин и охлаждении на воздухе. Исследуемые степени наклепа охватывают диапазон возможных деформаций металла труб при холодной гибке пароперегревательных труб, а режимы последующей термообработки близки к режимам, применяемым на производстве.  [c.152]

В этом режиме, с одной стороны, уже нет диффузионного увеличения скорости молекулы, а с другой стороны, ещё нет малого изменения фазы при отдельном столкновении мал только коэффициент растяжения фазы . При этом уравнения остаются разностными, но их динамика носит регулярный характер.  [c.24]

Метод определения эквивалентных параметров для режимов с постоянными значениями ст и Т был изложен в разделе 2 при расчете лопатки на растяжение. При непрерывно меняющемся на /-м режиме напряжении эквивалентное напряжение этого режима вычисляется по формуле линейного суммирования повреждения  [c.317]

Допускается применять нагружение базовых образцов изгибом в мягком режиме с коэффициентом асимметрии г 0,05, При этом в зоне вырезки готовых ударных образцов (в месте надреза), расположенной только в зоне остаточных деформаций растяжения, деформация металла базовых образцов должна быть на уровне (2,5 + 0,25)%. Надрез иа ударном образце следует располагать со стороны максимальной пластической деформации,  [c.202]


С целью более полной проверки модели был выполнен расчетный анализ долговечности одноосных образцов при двух режимах нагружения с различными скоростями деформирования на стадиях растяжения и сжатия. В первом режиме скорости деформирования i = lO-s с-, Il2 = с во втором— gi = 10- с-, 2 =10-2 с в обоих режимах нагружения размах деформаций Де = 2%. Результаты расчетов показали, что с увеличением по модулю скорости деформирования 2 (сжимающая часть цикла) при неизменной i (растягивающая часть цикла) долговечность до зарождения межзеренного разрушения уменьшается (рис. 3.12). Такой эффект связан с уменьшением залечивания пор при сжатии (с увеличением Ibl темп уменьшения радиуса пор падает), что достаточно хорошо согласуется с имеющимися экспериментальными данными [240, 273].  [c.185]

Пример 5. Определить допускаемое напряжение растяжения для цилиндрической колонны пресса в зоне перехода диаметров di = 60 мм в = 70 мм при эффективном коэффициенте концентрации напряжений для симметричного цикла Кд =2,3. Напряжение изменяется во времени по асимметричному циклу (г = = +0,2) в соответствии с тяжелым режимом нагружения (см. рис. 1.8, в). Расчетный срок службы L= 15 лет, коэффициент использования в течение года Кр =0,75, коэффициент использования в течение суток /С =0,66, частота на-  [c.20]

Имеется в виду сле,п,ующее. Надо изобразить несколько шарнирно-стержневых систем, скажем, таких, как показаны на рис. 8.9, задать определенные температурные режимы (например, в первой из показанных систем нагревается на Д7 средний стержень) и попросить учащихся указать, какие стержни будут испытывать растяжение и какие — сжатие. Если учащиеся справятся с этим упражнением, то можно надеяться, что решение задач не вызовет особых затруднений.  [c.91]

Машины типа УЭ — универсальные, они могут работать как в статическом режиме, так и в циклическом с любым коэффициентом асимметрии цикла. Частота нагружения образца колеблется от о до 5 Гц, т. е. машина позволяет вести испытания материалов на обычную выносливость и малоцикловую усталость. На такой машине обеспечивается режим испытания образцов на изгиб и на растяжение — сжатие.  [c.362]

Изучение упругопластических циклических свойств материалов было начато немецким ученым Баушингером. Первые его работы были опубликованы в 1881 г. Он исследовал изменение предела текучести мало- и среднеуглеродистых сталей при повторном нагружении с изменением и без изменения знака нагружения. Баушингером было установлено, что при пульсирующем растяжении с напряжением Оо, превышающим пре,цел текучести Стт, новое значение предела текучести при последующем нагружении приблизительно соответствует заданному значению СТо- После нагружения образца до Оо он разгружается до нуля с последующим нагружением (рис. 21.3.1). При знакопеременном нагружении образца выше предела текучести От предел текучести в режиме сжатия оказы-  [c.363]

Круг Мора, соответствующий напряжениям сг и Од и заключающий внутри себя два других круга, называется главным. Построим серию главных кругов Мора, соответствующих некоторой серии экспериментов с доведением испытания до разрушения, и на одном чертеже построим их огибающую (рис. 8.16). Эта огибающая пересечет ось Оа в некоторой точке А, которая соответствует разрушению при условии = 02 = аз > О, т. е. разрушению при всестороннем растяжении. Эта точка расположена на конечном расстоянии от начала координат, так как прочность материала при таком режиме нагружения должна быть ограниченной. Правда, этот эксперимент не реализуем в натуре или реализуем лишь мысленно. Но все эксперименты, которым соответствуют круги Мора, расположенные слева от этой точки, могут быть в той или иной мере реализуемы, по крайней мере, в режиме плоского напряженного состояния. Так как на построение упомянутой огибающей не влияет напряжение Og, то исключим его из рассмотрения. Это является недостатком критерия прочности Мора. Теперь выскажем гипотезу о том, что все напряженные состояния, которым соответствуют точки плоскости Ота, лежащие внутри огибающей главных кругов Мора, построенных для состояния разрушения, безопасные. Внутренней областью огибающей кругов Мора считаем ту, которая содержит начало координат. Построить полностью огибающую кругов Мора нет возможности из-за необходимости выполнить большое число экспериментов, однако можно построить аппроксимацию этой огибающей на базе двух экспериментов следующим образом.  [c.168]


Цилиндрические образцы с кольцевым надрезом (диаметр внешний 8 мм, в надрезе 6 мм, радиус в вершине надреза 0,1 мм) испытаны на машинах УММ-5 и УМЭ-10Т (отнулевое растяжение в мягком режиме в интервале напряжений, частота 1 Гц) [15]  [c.23]

С другой стороны, элементы конструкции с усталостной трещиной могут длительное время находиться под нагрузкой. Такая ситуация возникает, например, с дисками компрессоров ГТД из титановых сплавов ВТ-8 и ВТЗ-1. Их разрушение имеет место в период крейсерского режима, когда двигатель не меняет своих оборотов и поэтому динамическая нагрузка от двухосного растяжения дисков остается неизменной [92]. Кронштейны уборки-выпуска поддона самолета ИЛ-76, изготовленные из титанового сплава ВТ-5, разрушались в период крейсерского полета ВС, когда поддон располагался в подвешенном состоянии на кронштейнах и нагружал их собственным весом.  [c.113]

Напряженное состояние материала у вершины усталостной трещины даже в случае внешнего одноосного растяжения при раскрытии берегов усталостной трещины перед ее вершиной является объемным. Переход к внешнему воздействию по нескольким осям не нарушает объемности напряженного состояния материала у вершины трещины и не изменяет условия раскрытия ее берегов, если в процессе распространения усталостной трещины реализуются механизмы роста трещины, подобные механизмам разрушения при одноосном внешнем циклическом растяжении. Поэтому при различном сочетании уровня действующих нагрузок по нескольким осям всегда имеется некоторая область их значений, в которой развитие разрушения качественно аналогично ситуации с одноосным растяжением — на вершине распространяющейся усталостной трещины осуществляются упорядоченные переходы к возрастающим масштабным уровням разрушения, каждому из которых отвечает определенный механизм роста трещины. Это представление отвечает регулярному нагружению материала без эффекта влияния смены режимов нагружения на рост трещин.  [c.308]

Подробные исследования переходных режимов нагружения на рост трещины при однопараметрической смене соотношения главных напряжений были выполнены на нержавеющей стали 304 с пределом текучести 284 и 333 МПа [40]. На крестообразных образцах толщиной 5 мм было продемонстрировано, что переходы к симметричному сжатию от одноосного растяжения или симметричного растяжения сопровождаются резким ускорением роста трещины с последующим снижением скорости по мере роста трещины. При этом в случае роста трещины при одноосном нагружении ее скорость на значительной длине остается неизменной. Причем при снижении уровня первого главного напряжения со 196 к 163 МПа различия в СРТ нет при одноосном нагружении и симметричном растяжении-сжатии. Этот факт объяснен влиянием пластических свойств материала, как это было указано в главе 6. При снижении величины ai/Oo,2 = влияние второй компоненты нагружения на рост трещины снижается.  [c.410]

Бюл. № 29). Далее надлежит произвести продольные взаимные перемещения берегов трещины в динамическом режиме колебаний лопатки. С момента осуществления динамического нагружения постепенно уменьшают растяжение и переходят к сжатию. Максимальная нагрузка сжатия должна равняться двойной нагрузке в момент раскрытия берегов трещины. После этого плавно снимают продольное динамическое перемещение. Усилить эффект от применения последовательно-  [c.453]

На базе машины ЦДМ-5 также разработана установка [И5] для испытания на малоцикловое циклическое растяжение-сжатие с кручением при непрерывной записи диаграммы деформирования. На установке можно проводить испытания при циклическом нагружении с мягким и жестким режимом при любой требуемой асимметрии цикла.  [c.247]

Если хотя бы одна фаза (или несколько фаз) материала относится к типу ТСМ-2, о котором шла речь в разд. II, Г, то принцип соответствия для нестационарных температурных режимов вообще не выполняется. Более того, сам такой композит еще сложнее с точки зрения реологии, чем ТСМ-2. Однако для важного частного случая неизотермическое поведение таких материалов можно описать при помощи изотермических характеристик их фаз. Это имеет место в том случае, когда эффективные характеристики при изотермических условиях удовлетворяют равенству (130), а модули при растяжении — равенству (133). Можно показать, что в этом случае определяющие уравнения получаются заменой интегралов в уравнениях (63) и (64) (с применением формул (130) и (133)) интегралами вида (50), (56) или (57). Результаты еще больше упрощаются, если все эффективные характеристики удовлетворяют соотношению (130) тогда, например, интегральное соотношение (142) принимает вид  [c.161]

Результаты расчетов, выполненных с помощью представленных выше уравнений, подтвердили возможность описания ползучести при одноосном растяжении по сжатию на длительное вдавливание при разных режимах испытаний получено вполне удовлетворительное совпадение кривых на всех этапах процесса.  [c.119]

Результатов испытаний с широким набором видов напряженного состояния очень мало. В этом отношении являются уникальными исследования серого чугуна, проведенные Коффиным [84] на трубчатых образцах обследованные виды напряженных состояний охватывают всю область плоских напряженных состояний от двухосных растяжений до двухосных сжатий при одинаковых режимах проводились, как правило, испытания нескольких параллельных образцов (от двух до пяти).  [c.140]

Следует отметить, что Си после РКУ-прессования может показывать и относительно низкую пластичность при растяжении (10%) [326]. По-видимому, это связано с высокой долей малоугловых границ зерен присутствующих в образцах после определенных режимов РКУ-прессования. В работе [61] испытывали Си со средним размером зерен 210 нм при сжатии. Испытание проводилось при комнатной температуре с начальной скоростью деформации 1,4 X 10 с Ч Было также обнаружено, что деформационные кривые для Си с различным размером зерен различаются по форме. Типичными особенностями кривой деформации сжатием в случае наноструктурной Си являются высокое напряжение течения, равное 390 МПа, значительное начальное деформационное упрочнение в узком интервале степеней деформации (примерно 5%) на начальной стадии деформации, практически полное отсутствие деформационного упрочнения на последующей стадии деформации. Напряжение течения на второй стадии составило около 500 МПа. В то же время пластичность наноструктурной Си была высока. Образцы при сжатии не разрушались даже после максимальной деформации, которая в данном эксперименте равнялось 83%.  [c.185]


Отмеченное выше наличие режимов неизотермического нагружения, обладаюш,их большим повреждающим эффектом, когда максимальная температура достигается в условиях растяжения, требует определенной осмотрительности при использовании результатов термоусталостных испытаний в оценке прочности. Воспроизведение на термоусталостных установках лишь режима типа, показанного на рис. 1.3.1, в, исключает возможность выявить минимальные характеристики сопротивления малоцикловому неизотермическому нагружению. Отмеченное обстоятельство указывает на то, что термоусталостные испытания, проводимые с высокотемпературными выдержками при сжимающих нагрузках, могут дать завышенную, не идущую в запас прочности оценку долговечности, когда рассчитываемая на прочность конструкция работает в условиях высокотемпературного растяжения (режим — рис. 1.3.1, б).  [c.56]

Программное устройство (рис. 2) предусматривает выполнение этих этапов в необходимой последовательности в автоматическом режиме с записью кривой растяжения. Срабатывание контактов реле времени (РВ1 и РВ2) определяет этапы моделирования ТМО. Нагрев образца производится непосредственно пропусканием электрического тока. Включение цепи нагрева образца осуществляется контактором К1. При достижении заданной температуры аустенитизации конечный выключатель ВК1 замыкает цепь реле времени РВ1. После определенной выдержки при заданной температуре аустенитизации контакты РВ11 замыкаются, цепь управления электромагнитной муфтой (ЭММ) ока-  [c.51]

Кривые 3 ш 4 соответствуют неизотермическому циклу с такими же скоростями деформирования в полуциклах растяжения и сжатия. Температура в пределах каждого полуцикла оставалась постоянной растяжение — 650, сжатие — 150 С и изменялась при 0 = 0. Как видно из рис. 5.13, независимо от уровня температуры в полуцикле сжатия кривые 1 и 3 практически совпадают при равных скоростях деформирования и одинаковой амплитуде необратимых деформаций. Вместе с этим был отмечен обратный эффект — влияние деформаций ползучести, развивающихся при высокой температуре, на ход кривой активного нагружения в последующем полуцикле с более низкой температурой. В этом случае в эксперименте наблюдается некоторое смещение кривой активного нагружения вниз по сравнению с неизотермическими испытаниями без выдержек. На рис. 5.14 показаны диаграммы деформирования стали Х18Н9 при неизотермическом нагружении, характерные для стабильного цикла. Нагружение осуществлялось по жесткому режиму с контролируемым законом изменения деформаций, температура изменялась в момент перехода через нуль по напряжениям от 150 до 650° С в процессе одноминутной выдержки. Кривые 1 ж 2 соответствуют циклу без выдержки, 3 и 4 — циклу с выдержкой при растяжении. Выдержка осуществлялась при 0 = onst до момента достижения заданного значения деформации. Как следует из рис. 5.14, смещение кривой 4 относительно кривой 2 составляет 10—15%. Отмеченное влияние деформаций ползучести при высокой температуре на активное нагружение при более низкой температуре может быть описано, как уже указывалось выше для изотермического случая, с использованием подходов, изложенных в главах 6, 7.  [c.126]

Учитывая общую тенденцию перехода к межкристаллитному разрушению с увеличением температуры, длительности выдержки и понижением амплитуды пластической деформации, нельзя отрицать значение ползучести материала. Например, в испытаниях стали 304 по стандарту ASTM при 593° С независимо от окружающей среды преобладает межкристаллитное разрушение в режимах с выдержкой при растяжении и внутризеренное — с выдержкой при сжатии [52]. Результаты же экспериментов в вакууме и на воздухе недостаточно согласуются с данными по повышенной (или по крайней мере равной) долговечности при изгибе по сравнению с растяжением и сжатием, так как следовало бы ожидать обратного соотношения вследствие наиболее благоприятных условий для протекания процессов окисления в поверхностных слоях при изгибе. Кроме того, в испытаниях с выдержкой длительностью 30 мин разница между долговечностью в вакууме и на воздухе была существенно ниже, чем при непрерывном циклировании [78].  [c.50]

Таким образом, важным фактором, обусловливающим степень снижения малоцикловой долговечности за счет введения выдержки в полу-цикл растяжения, является, с однор стороны, значение упругопластической деформации в режиме жесткого нагру кения и, с другой, — знак циклической деформации при выдержке. В этом отношении ценная информация получена в работах [17, 29, 120, 123, 124, 129], некоторые результаты которых представлены на рис. 2.10, а. Наибольший повреждающий эффект при малоцикловом жестком нагружении соответствует режиму с выдержкой в полуцикле растяжения. Однако некоторые результаты (рис. 2.10, а), полученные в режимах с выдержкой при сжатии, не обнаруживают заметной тенденции к изменению малоцикловой долговечности.  [c.54]

Образец толщиной 15-30 мм для оценки сопротивляемости металла однопроходных тавровых швов с конструктивным непроваром, выполненных следующими видами сварки А, РЭ, ИП, УП. Образцы вырезают независимо от направления прокатки. Косынки можно изготовлять из металла, отличающегося по составу от испытуемого. Сварку ведут в два прохода без использования технологических планок на режимах, характерных для данного вида сварки. После сварки перерезают косынки и образец разрушают изгибом с растяжением в корне шва. При отсутствии трещин в первом образце при сварке следующего образца увеличивают скорость сварки и мощность дуги при условии сохранения катета шва до выявления критической скорости сварки, приводящей к образованию трещин  [c.194]

Для оценки влияния технологии изготовления на ползучесть и длительную прочность были проведены испытания на растяжение образцов стеклотекстолита, вырезанных из колец, изготовленных по десяти различным технологическим режимам с варьированием натяжения ткани при намотке, скорости намотки и температуры опорных валов. Все кольца изготовлены из одной партии стеклоткани марки типа Гупр 8/3-250 и одной партии связующего ИФ/ЭД-6 кг. Образцы вырезались вдоль утка ткани.  [c.28]

Основные операции этого режима острения нагрев около 1200° С, охлаждение до 600—700° С, растяжение  [c.365]

Испытание проводится следующим образом образцы из испытуемого материала собирают для сварки в захватах испытательной машины так, что один из них закреплен неподвижно, а второй может получать поступательное движение с заранее заданной скоростью v. В процессе сварки образцов на заданном режиме, который в процессе испытания всей серии образцов должен поддерживаться постоянным, после достижения устано-вивилегося температурного поля автоматически включается механизм растяжения. Предположим, что в момент начала растяжения в центре шва существовало распределение температур, изображенное на рис. 12.47.  [c.484]

Можно отметить следующие особенности разрушений при статическом нагружении при одновременном действии механических нагрузок и рабочих сред. В условиях общей коррозии характер разрушений мало отличается от такового при статическом нагружении в нейтральной среде. В зависимости от качества металла и свойств коррозионной среда разрывы происходят по механизму вязкого или хрупкого разрушения. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что, несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразование) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой. В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва. Часто имеет ме-  [c.119]


Для наглядности будем говорить о трехмерном пространстве состояний и представлять себе аттрактор расположенным внутри двумерного тора. Рассмотрим пучок траекторий на пути к аттрактору (ими описываются переходные режимы движения жидкости, ведущие к установлению стационарной турбулентности). В поперечном сечении пучка траектории (точнее —их следы) заполняют определенную площадь проследим за изменением величины и формы этой площади вдоль пучка. Учтем, что элемент объема в окрестности седловой траектории в одном из (поперечных) направлений растягивается, а в другом — сжимается ввиду диссипативности системы сжатие сильнее, чем растяжение— объемы должны уменьшаться. По ходу траекторий эти направления должны меняться — в противном случае траектории ушли бы слишком далеко (что означало бы слишком большое изменение скорости жидкости). Все это приведет к тому, что сечение пучка уменьшится по площади и приобретет сплющенную, и в то же время изогнутую форму. Но этот процесс должен происходить не только с сечением пучка в целом, но и с каждым элементом его площади. В результате сечение пучка разбивается на систему влол<енпых друг в друга полос, разделенных пустотами С течением времени (т. е. вдоль пучка траекторий) число полос быстро возрастает, а их ширины убывают. Возникающий в пределе t- oo аттрактор представляет собой несчетное множество бесконечного числа не касающихся друг друга слоев — поверхностей, на которых располагаются седлов1ле траектории (своими притягивающими направлениями обращенные наружу аттрактора). Своими боковыми сторонами и своими концами эти слои сложным образом соединяются друг с другом каждая из принадлежащих аттрактору траекторий блуждает по всем слоям и по прошествии достаточно большого гцзсмеии пройдет достаточно близко к любой точке аттрактора (свойство эргодичности). Общий объем слоев и общая площадь их сечений равны нулю.  [c.166]

В настоящее время специальным конструкторским бюро испытательных машин (СКБИМ, г. Армавир) спроектирована и серийно выпускается заводом ЗИМ универсальная малоцикловая машина УМЭ-10 ТМ, позволяющая вести статические и малоцикловые испытания образцов при нормальных и служебных температурах с предельным нагружением до 10 тыс. Этим же бюро спроектированы и серийно изготовляются заводом ЗИМ универсальные циклические машины УЭ-50, УРС-20, УРС-50 и УРС-200, позволяющие вести малоцикловые испытания в режиме растяжение — сжатие. Малоцикловые машины на разные предельные нагружения выпускаются и зарубежными фирмами (Instron, MTS и др.).  [c.362]

В работах И. А. Одинга и 3. Г. Фридмана [57—58], проведенных на промышленных жаропрочных сплавах (ЭИ617, ЭИ437 и сталь 1Х18Н9), установлены оптимальные режимы МТО, приводящие к увеличению срока службы в 5—50 раз. При МТО образцы подвергали активному растяжению при температуре 600° с последующим отдыхом в течение 100 час. при этой же  [c.32]

Оценка влияния состояния поверхности образцов после их упрочнения на относительную живучесть материала была проведена применительно к титановым сплавам ВТЗ-1, ВТ-8, ВТ-22 и ОТ-4, которые вгароко используются в элементах конструкции ВС и ГТД гражданской авиации [106]. Были рассмотрены различные режимы нанесения на поверхность круглых образцов слоя хрома, который используют для снижения контактных повреждений для вращающихся деталей. Разработанная технология нанесения слоя хрома включает в себя первоначально этап подготовки поверхности путем упрочнения ее шариками, а далее осуществляется электрохимическое осаждение слоя хрома различной толщины за один или несколько этапов [107]. Были рассмотрены ситуации изменения режимов хромирования по трем параметрам размеру шариков, используемых для упрочнения поверхности, температуре раствора и величине тока в процессе нанесения хрома также рассмотрено одно-, трех- и шестикратное хромирование. Испытания на усталость выполнены при растяжении и изгибе с вращением корсетных, круглых образцов диаметром в рабочей зоне 8 мм в диапазоне уровней напряжения 330-850 МПа. Длительность роста трещины определяли фрак-тографически после достижения глубины около  [c.64]

Рис. 2.10. Рельеф излома плоских образцов из сплава Д16Т при различном сочетании режимов нафева и растяжения с разной скоростью деформации Рис. 2.10. Рельеф излома плоских образцов из сплава Д16Т при различном сочетании режимов нафева и растяжения с разной скоростью деформации
Разработана [154] электродинамическая установка длк испытания на усталость лопаток турбин и компрессоров в условиях высоких температур. Частота нагружения от 200 до 3000 Гц, температура испытания до 1200°С. Испытания на усталость замковых соединений лопаток турбин и компрессоров проводят при совместном действии статического растяжения и переменного изгиба на машине резонансного типа [50]. Установка УЛ-(1 предназначена для исследования усталостной прочности лопаток и образцов в резонансном режиме [3]. Разновидностью электромагнитной установки для испытания лопаток является выпускаемая в ЧССР машина Турбо . Лопатки турбомашин испытывают на резонансных частотах Возбуждение колебаний лопаток может осуществляться пульсирующей воздушной струей [50]. Создана многообразцовая электромагнитная машина для испытания на усталость лопаток при одновременном статическом растяжении в условиях высоких температур и специальных сред, а также установка для испытания на усталость диска турбины с укрепленными на нем лопатками с электродинамическим возбудителем колебаний. Имеются установки для испытания лопаток и образцов при растяжении и изгибных колебаниях, а также на термическую уста-лость .  [c.226]

Характер разрушения в ряде случаев зависит от последовательности приложения нагрузок. Так, на стали 12Х18Н10Т было показано [65], что при последовательном нагружении термоцик-лнрование (600° г 300С) плюс длительное статическое растяжение (600°С) или при тех же температурных режимах длительное статическое нагружение плюс термоциклирование, а также попеременное приложение термоциклического и статического напряжения — разрушение всегда проходило по границам зерен, в то время как при чистых испытаниях на тех же температурных режимах возможно было смешанное, а при высоких уровнях нагрузки — внутризеренное разрушение.  [c.164]

Как показывают экспериментальные данные (см. рис. 1.2.4), при наличии в цикле выдержек наблюдается весьма существенное изменение напряжений и деформаций, причем накопленная деформация может превышать заданный размах в 2—3 раза и более. Расчет длительной малоцикловой прочности в соответствии с кинетическими деформационными критериями в форме уравнений (1.2.8), (1.2.9) дает для рассматриваемого случая нагружения хорошее соответствие расчетных и экспериментальных данных (таблица 1.2.1). На рис. 1.2.2, б показаны величины накопленного повреждения для режимов нагружения с выдержками при растяжении и сжатии, а также только при сжатии (точки 4). Характерно, что новые данные укладываются в поле рассеяния точек, соответствующих испытаниям, проведенным в условиях мягкого и жесткого нагружений без выдержек и с выдержками при постоянном напряжении (точки 2). Для расчета величины повреждения использована зависимость распо.пагаемой пластичности от времени, где ( ) — пластическая деформация при статическом разры-  [c.27]

Другим существенным вопросом, который необходимо учитывать в процессе оценки повреждений при длительном малоцикловом нагружении, оказывается наблюдаемый в ряде случаев эффект большего повреждающего действия выдержек при растяжении, чем при растяжении — сжатии или только сжатии, проявляющийся в испытаниях как в режиме мягкого (ползучесть), жесткого (релаксация), так и промежуточного между мягким и жестким нагружением. В работах [80, 203, 216] на аустенитной нержавеющей стали типа 18Сг—8Ni (600—650° С) отмечается при наличии выдержек в цикле растяжения двукратное снижение числа циклов до появления макротрещины. На рис. 1.2.2, б в качестве примера приведены данные для стали Х18Н9 (650° С) по накоплению повреждений при длительном малоцикловом нагружении с выдержками при растяжении. Отмечается понижение для указанного режима величины В до 0,5 [80].  [c.36]


Смотреть страницы где упоминается термин Режимы с растяжением : [c.112]    [c.247]    [c.179]    [c.44]    [c.57]    [c.262]    [c.94]    [c.354]    [c.98]   
Справочник технолога-машиностроителя Том 2 Издание 4 (1986) -- [ c.397 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте