Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ток коррозии (коррозионный)

Из уравнения (35) можно сделать следующие основные выводы. Полная защита будет при силе коррозионного тока равной нулю. Так как коэффициент Ь является для каждого отдельного случая сравнительно постоянной величиной, меньше единицы, то, следовательно, степень защиты будет тем больше, чем больше сила защитного слоя вплоть до значения, при котором произведение Ып достигает величины, равной силе тока коррозии /д без защиты протектором.  [c.303]


Местная коррозия в результате возникновения гальванических макропар наблюдается и в случае различия электрохимических характеристик отдельных участков одного и того же металла. Контактная коррозия в лабораторных условиях исследуется путем моделирования макропар, измерения их коррозионных токов, построением коррозионной поляризационной диаграммы, по величине тока и потенциалам электродов пары в электролите при изменении внешнего сопротивления и т. д. Вели электродами гальванической пары являются анодные и катодные структурные составляющие какого-либо металла, то тэ кая  [c.348]

Изложены закономерности учения о коррозии металлов и основы технологии противокоррозионной защиты. Рассмотрены биогенная и почвенная коррозия, высокотемпературное окисление металлов, питтинговая и межкристаллитная коррозия, коррозионное растрескивание, влияние радиации и блуждающих токов. Охарактеризована стойкость основных групп металлических конструкционных материалов, в том числе новых сплавов, используемых в химической, атомной, энергетической и других отраслях промышленности.  [c.4]

Представление о том, что коррозия порождается разностью потенциалов между анодными и катодными участками и ее скорость пропорциональна этой разности, лежит в основе так называемой теории микрогальванических элементов Определенный вклад в суммарную скорость коррозии этот фактор действительно вносит. Однако вклад этот весьма невелик, обычно меньше 1—2 %, и исчезающе мал для чистых металлов. В первом приближении поверхность корродирующего металла можно считать изопотенциальной. Скорость коррозии определяется значением анодной плотности тока при коррозионном потенциале. Сказанное относится к микрогальваническим элементам, но не к полиметаллическим системам, где коррозия происходит при контакте разнородных металлических частей значительных размеров. Количественный анализ этих явлений приведен в [2а и 2Ь]. — Примеч. ред.  [c.24]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]


Некоторые металлы, например хром, на воздухе пассивны и остаются блестящими годами, в отличие от железа или меди, которые быстро корродируют и тускнеют в короткое время. Показано, что пассивные свойства хрома присущи и железохромистым сплавам при содержании Сг — 12 % и более (такие сплавы известны как нержавеющие стали). Типичные зависимости скорости коррозии, коррозионного потенциала и критической плотности тока от содержания хрома показаны на рис. 5.9—5.11. Заметим, что на рис. 5.11 /крит пассивации Сг — Fe-сплавов при pH = 7 достигает минимального значения (около 2 мкА/см ) при содержании Сг 12 % . Это значение так мало, что коррозионные токи  [c.88]

Исследование кинетики электродных реакций. Один из основных методов изучения механизма процессов электрохимической коррозии металлов и сплавов это построение и анализ поляризационных кривых, пользуясь которыми можно также определить ток коррозии и рассчитать коррозионные потери.  [c.85]

Как следует из уравнения (8), удельное сопротивление почвы и общая площадь поверхности обнаженных участков трубопровода определяют плотность тока коррозии. Это уравнение поясняет также, почему после появления первой утечки коррозия трубопровода ускоряется продукты коррозии, как правило, снижают удельное сопротивление почвы. Кроме того, как только в трубопроводе возникает сквозное отверстие, площадь анодного участка в этом месте уменьщается и плотность коррозионного тока возрастает. ,  [c.45]

Зависимость скорости анодного растворения от потенциала для большинства металлов имеет характерную форму, которая представлена на рис. 4. При протекании электрохимических процессов происходит перенос электрических зарядов через границу металл—коррозионная среда. В связи с этим скорости окисления металла или восстановление окислителя удобно представлять в единицах силы тока. Отмеченные на рис, 4 точки характеризуют следующие величины Е — равновесный потенциал металла, — потенциал коррозии (стационарный потенциал). Ей — потенциал пассивации, Е п —потенциал полной пассивации. Ear — потенциал питтингообразования, ер — потенциал пере-пассивации, 1р — сила тока обмена в равновесии М"++ пе = М, — плотность тока коррозии, нр — плотность критического тока пассивации.  [c.25]

Особый интерес представляет поведение стали в кислотах, ингибированных ПБ-5 и смесью ингибиторов уротропин + И1А при добавке ионов Fe +. Катодная поляризационная кривая, полученная для обеих сред, имеет характерную s-образную форму, анодный процесс существенно облегчается, стационарный потенциал резко сдвигается в сторону положительных значений (рис. 50, в), а зависимость коррозии стали от деформации резко уменьшается. Судя по поляризационным кривым, ток коррозии должен значительно возрастать (в недеформированном состоянии) при добавлении ионов Fe +. Действительно, коррозионные испытания, выполненные методом измерения потери массы (при 50° С), показали, что добавка ионов Fe + примерно на порядок увеличивает скорость коррозии в обеих средах, тогда как в неингибированной кислоте скорость коррозии возросла совсем незначительно.  [c.149]

Электрическое сопротивление. Сопротивление почвенной влаги определяют концентрация различных ионов и их подвижности. Высокие уровни концентрации соли наблюдаются в областях, раньше бывших морским дном или там, где применяли большие количества удобрений или дорожной соли. Удельное сопротивление электролита влияет на величину тока в коррозионном элементе, когда расстояние между катодом и анодом достаточно велико, чтобы омическое падение потенциала внутри элемента стало значительным. Там, где существуют предпосылки для образования такого элемента, опасность локальной коррозии велика, если сопротивление почвы < 1000 Ом см, и мала, если оно > 5000 Ом см.  [c.53]

Исследования поляризационного сопротивления. Так называемое поляризационное сопротивление R = т Ц измеряют в линейной области поляризационной кривой, т.е. в непосредственной близости от потенциала коррозии (см. 2.7). Поляризационное сопротивление является мерой заторможенности коррозионного процесса и в данной системе обратно пропорционально току коррозии. Имеются промышленные инструменты для измерения поляризационного сопротивления. Измерения производят, используя два или три электрода, смонтированные вместе и образующие измерительный датчик. Результат может быть прочитан непосредственно на шкале прибора в единицах скорости коррозии.  [c.145]


Характер кривой потенциал — время, а также кривые изменения тока коррозии во времени в определенной степени отражают различные периоды коррозионно-усталостного разрушения металлов. Для первоначаль-  [c.41]

Контролирующий фактор коррозионного процесса более четко выявляется при анализе хода идеальных поляризационных кривых (графический метод анализа коррозионных процессов) (см. рис. 10). При протекании коррозионного тока в системе происходит смещение значений электродного потенциала анодной и катодной реакции в направлении их сближения. Обычно анодная и катодная кривые не пересекаются (поверхность металла не становится эквипотенциальной), за счет определенного омического сопротивления электролита. Максимальный ток коррозии /щах отвечает определенным сближенным значениям электродного потенциала анодной и катодной реакции (анодного и катодного участка) и определенному омическому падению потенциала IR (если величина R бесконечно мала — кривые пересекаются и поверхность становится эквипотенциальной). Значение стационарного потенциала V m металла или сплава (соответствующее пересечению кривых) в общем случае определяется (см. рис. 10) соотношением скоростей анодной и катодной реакции при максимальном токе коррозии /max. Степень наклона поляризационных кривых характеризует большую (крутой ход) или малую (пологий ход) затрудненность протекания электродных реакций. Количественно эта затрудненность выражается величиной поляризуемости электродных реакций Рк или Ра (поляризуемость имеет размерность омического сопротивления J л и.  [c.130]

Классические поляризационные кривые приведены на рис. 9.5. Сначала кислород из воздуха переходит в водный раствор, после чего потенциал металла повышается от потенциала катода (—) до потенциала анода ( + ). При этом течет отрицательный электрический ток, складывающийся из малого тока восстановления ионов кислорода и большого тока восстановления ионов водорода. Этот суммарный ток всегда отрицательный. Его протекание повышает электрический потенциал. По абсолютной величине этот ток невелик. Анодный ток, соответствующий анодному растворению, по абсолютной величине равен катодному току, а потенциал, отвечающий такому состоянию, является потенциалом коррозии. Так как во внешней цепи поддерживается равновесие, растворение металла начинается уже при электрическом потенциале, отвечающем точке 3. Анодный электрический ток (ток коррозии) пропорционален скорости коррозионного растворения. Он возрастает с увеличением потенциала. Диапазон потенциалов, соответствующий активному растворению металла, называется областью активного состояния.  [c.252]

Этот вид коррозии исследуется путе.м моделирования макропар, измерения их коррозионных токов, построения коррозионной поляри-  [c.264]

Электрохимическая коррозия —это взаимодействие металла с коррозионной средой, при котором ионизация атомов металла и восстановление окислительной компоненты коррозионной среды протекает не в одном акте. В случае электрохимической коррозии путь электрона велик по сравнению с размерами реагирующих атомов ввиду пространственного разделения участников реакции, электронные переходы совершаются упорядоченно и процесс сопровождается возникновением электрического тока ( тока коррозии ), а скорость процесса зависит от потенциала.  [c.33]

Из диаграммы коррозии на рис. 205 следует, что увеличение пористости пленки, приводящее к увеличению поверхности пор, должно сопровождаться вследствие уменьшения анодной поляризуемости сдвигом общего потенциала короткозамкнутой системы к более отрицательным значениям и увеличением тока коррозии Утах. а уменьшение пористости пленки — к более положительным (или менее отрицательным) значениям с уменьшением коррозионного тока /щах-  [c.301]

Анализ данных, представленных в табл. 45, показал, что ингибиторы Реакор-11 ЮА и СПМ-1 проявляют смешанный эффект торможения, вызывая снижение тока коррозии в результате уменьшения площади поверхности металла, на которой протекает катодная реакция водородной деполяризации, а также изменяя строение двойного электрического слоя на границе металл-коррозионная среда и величину адсорбционного Ч, -потенциала. Ингибиторы Реакор-11 ЮСП и СПМ-2 замедляют коррозию стали за счет реализации Ч )-эффекта, то есть характеризуются энергетическим воздействием на поверхность металла.  [c.301]

Морская атмосфера обладает повышенной коррозионной активностью вследствие наличия в воздухе морской соли в виде тонкой пьши и высокой относительной влажности. Электрохимический процесс в морской атмбсфере происходит иначе, чем в морской воде. В морской атмосфере доступ кислорода через тонкую пленку влаги облегчен и не лимитирует процесс. В данном случае скорость коррозии зависит от омического сопротивления влажной пленки, так как при малой толщине ее сопротивление внешней цепи между анодом и катодом коррозионного элемента может стать очень большим. Морская соль, содержащаяся в воздухе, растворяется в пленке влаги и быстро насьдцает ее, что значительно уменьшает омическое сопротивление пленки и увеличивает коррозионный ток. Коррозия в морской атмосфере у сталей, содержащих медь, меньше, чем у углеродистых.  [c.10]

Структуры поверхностного слоя, образованного в результате импульсной обработки, имеют пониженный минимум емкости двойного электрического слоя металл-среда. Белые слои, повышая перенапряжение катодной и анодной сопряженных реакций, заметно увеличивают тафелевскую константу и уменьшают ток коррозии в связи с увеличением степени локализации валентных электронов и усилением ковалентности связи желеэо—углерод, которое наступает в итоге импульсного воздействия высоких температур и давлений при формировании структур в поверхностном слое. При этом рост содержания углерода в белом слое из-за улучшения его качества приводит к понижению емкости двойного электрического слоя и увеличению коррозионной стойкости стали.  [c.116]


Если учесть, что в случае коррозионного процесса А Е = / — — а Ан ,- = Есог — нЕ то приравнивая уравнения (36) и (37) и исключая Есог, МОЖНО получить следующее уравнение для скорости коррозии (плотности тока коррозии г сол)  [c.16]

Степень продвижения коррозии как процесса можно выразить, например, через изменение массы материала, глубину прокорроди-ровавшей поверхностной зоны или образовавшихся питтингов, количество продуктов коррозии, изменение предела прочности, предела текучести или деформации, вызывающей разрушение материала. Изменение этих величин в единицу времени может быть мерой скорости коррозии. Другой мерой является плотность коррозионого тока. Ниже приведены некоторые из обычно используемых единиц скорости коррозии изменение массы, г/(м -год), мг/(дм -день) рост глубины коррозии, мм/год, мкм/год(10" мм/год), дюйм/год (25,4 мм/год), мил/год (25,4 мкм/год) ток коррозии, А/м , мА/см = 10 А/м снижение пределов прочности, текучести, разрушающей деформации, проценты/год (от начальной величины).  [c.24]

В пользу электрохимической гипотезы коррозионно-механического разрушения говорит большая локальная скорость растворения металла, которая выражается в высокой локальной плотности тока коррозии. По существующим в литературе оценкам ток коррозии ювенильной поверхности составляет 1 — 10 А/см , при наличии на поверхности того же металла оксидных пленок ток снижается до 10" — 10" А/см , т.е. до 9 порядков. Исследование з. ектродных потенциалов различных металлов в процессе образования ювенильных поверхностей непосредственно в электролите показало, что степень разблагораживания потенциала определяется свойствами защитных пленок. Чем выше защитные свойства, тем выше степень разблагораживания. Наибольшее смещение в отрицательную сторону потенциала по отношению к нормальному каломельному электроду отмечено у алюминия в 3 %-ном растворе Na I( до — 1,46 В), у магния — в растворе щелочи (1,19 В — 1,74 В). У железа, никеля и меди в 3 %-ном растворе Na I потенциал смещался соответственно от —0,47 до —0,6 В от — 0,17 до —0,51 В и от — 0,21 ДО —0,44 В. У ряда титановых сплавов нами получено смещение потенциала при зачистке поверхности, непосредственно в коррозионной среде от (—0,75) (— 0,90) В до (—1,24) -ь (-1,27) В.  [c.14]

Как показано выше (см. рис. 23, 27, 31 и 34), величина и характер изменения электродного потенциала в процессе коррозионной усталости железа, сталей, алюминиевых и титановых сплавов, а также изменение токов коррозии существенно зависят от амплитуды циклических напря- (ений и отражают определенным образом состояние приповерхностного слоя испытываемого объекта. Так как электрохимические характеристики металла чувствительны к состоянию его поверхности, электрохимический анализ можно эффективно использовать для изучения начальной стадии коррозионно-механического разрушения металлов.  [c.85]

Ситуация на сегодняшний день такова, что значительная часть трубопроводных систем (до 50 - 65 %) исчерпала установленный ресурс и вступает в период интенсификации потока отказов. При этом следует отметить, что одной из основных причин высокой аварийности технологических трубопроводных систем являются коррозионные повреждения (по литературным данным до 30 % от общего количества аварий). Проблема усугубляется еще и тем, что по условиям эксплуатации трубопровод, как правило, воспринимает одновременное воздействие механических нагрузок (деформаций) и коррозионно-активных сред. Такое совместное воздействие может вызвать ускоренное коррозионномеханическое разрушение трубопроводов в виде общей механохимической коррозии, коррозионного растрескивания, коррозионной усталости и др., которое значительно интенсифицируется под влиянием полей блуждающих токов.  [c.5]

Метод коррозионных диаграмм сыграл большую роль в изучении процессов цементации. Вместе с тем он оказался недостаточно корректным при изучении кинетики процессов цементации. Различие процессов коррозии и цементации прежде всего заключается в величине токов, протекающих в элементах. Плотность тока на катодных участках цементационных элементоэ на несколько порядков превосходит плотность тока в коррозионных элементах. Кроме того, в отличие от коррозионных элементов, работающих в почти стационарном режиме, работа цементационных элементов протекает в условиях нестационарной диффузии разряжающихся ионов к катодным участкам, величина поверхности которых существенно изменяется во времени. На различия процессов коррозии и цементации было указано также в работе [13].  [c.11]

Для определения тока коррозии следует проэкстраполировать линейные участки кривых СВА и DE до пересечения их друг с другом в точке К. Соответствующие этой точке потенциал кор и плотность тока кор называются потенциалом коррозии и скоростью коррозии. Потенциал коррозии часто называют также стационарным или коррозионным потенциалом. Иногда применяют термин потенциал свободной коррозии. Прямые АК и КЕ выражают зависимость от по-  [c.85]

Эндо и Коман получили уравнение, связывающее возрастание тока коррозии с количеством циклов при коррозионной усталости  [c.67]

Электрохимия интерметаллических фаз (ёплавов) является теоретической основой таких технологических процессов, как электрорафинирование металлов, электрохимическая размерная обрг(ботка, получение скелетных катализаторов. Анодные реакции на сплавах представляют собой один из парциальных коррозионных процессов, который определяет характер их коррозионного поражения (селективная коррозия, коррозионное растрескивание,- пробочное или язвенное разрушение и т. д.). Знание механизма и кинетики растворения сплава-анода определяет успех создания некоторых химичес-. ких источников тока.  [c.3]

Анализ приведенных кривых показывает, что при потенциалах 0,10 и 0,15 В сталь практически не подвержена коррозии потенциостатическая кривая проходит параллельно оси абсцисс, несмотря на некоторую синусоидальность кривых, средний ток коррозии остается небольшим. Синусоидальные формы кривых (особенно кривой на рис. 1.5,6) могут быть объяснены тем, что в морской воде при данных потенциалах протекает незначительная питтинговая коррозия стали. Появление пит-тингов сопровождается некоторым увеличением плотности коррозионного тока, но так как дальнейшего развития питтингов не происходит, сила тока каждый раз возвращается к своему Среднему значению.  [c.20]

Определенную помощь для уменьщения расходов и времени на коррозионный прогноз может оказать программа для проведения прогноза коррозионной стойкости нержавеющих сталей в водных сульфатсодержащих средах [102]. Программа учитывает влияние шести независимых факторов коррозии температуру, pH среды, скорость движения водного раствора, концентрацию растворенного кислорода и ионов Ре + и С1 . Для определения коррозионного состояния системы используются термодинамические и экспериментальные параметры данной системы, а также эмпирические зависимости. Программа включает прогнозирование потенциала металла системы, силы тока коррозии, хода поляризационных кривых, области иммунности (активную и пассив1ную), 01на позволяет находить наиболее неблагоприятные сочетания условий, обеспечивающие развитие коррозии. Авторы наметили пути усоверщенствования программы прогнозирования коррозии, что должно повысить точность и достоверность прогноза для величин, характеризующих корродирующую систему.  [c.178]



Смотреть страницы где упоминается термин Ток коррозии (коррозионный) : [c.460]    [c.300]    [c.55]    [c.80]    [c.14]    [c.44]    [c.47]    [c.53]    [c.181]    [c.32]    [c.228]    [c.160]    [c.204]    [c.204]    [c.259]    [c.163]    [c.32]    [c.56]    [c.132]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.291 ]



ПОИСК



АКТИВАТОРА ПРИ ПРОТЕКТОРНОЙ ЗАЩИТЕ ПОДЗЕМНЫХ МЕТАЛЛИЧЕСКИХ ТРУБОПРОВОДОВ ОТ КОРРОЗИИ АНАЛИЗ ВОЗМОЖНЫХ ВИДОВ КОРРОЗИОННО

Алюминий, влияние на химизм коррозионного растрескивания (КР) питтинговой коррозии

ВЫБОР ПОКАЗАТЕЛЯ КОРРОЗИИ И МЕТОДА ОЦЕНКИ КОРРОЗИОННОЙ СТОЙКОСТИ Изменение массы образцов (весовой метод)

Виды коррозионных разрушений и методы исследования коррозии

Влияние замедлителей коррозии па коррозионно-усталостную прочность стали

Влияние температуры, давления, скорости движения коррозионной среды на скорость коррозии

Вторичные коррозионные реакции. Продукты электрохимической коррозии

Выбор показателя коррозии и метода оценки коррозионной стойкости

Главапервая Основы теории коррозии металлов Классификация коррозионных повреждений и коррозионных процессов

Защита металлов от коррозии обработкой коррозионной среды

Изучение механизма сероводородной коррозии железа и стали в кислых среКаталитические теории стимулирующего коррозионного воздействия сероводорода

Испытания на коррозионное растрескивание, ударную коррозию и коррозионную усталость

КОРРОЗИЯ В ВОДЕ И ВОДЯНОМ ПАРЕ Коррозионная агрессивность водных сред

КОРРОЗИЯ И КОРРОЗИОННАЯ стойкость НЕОРГАНИЧЕСКИХ СТРОИТЕЛЬНЫХ И ФУТЕРОВОЧНЫХ МАТЕРИАЛОВ

КОРРОЗИЯ И КОРРОЗИОННАЯ стойкость ОРГАНИЧЕСКИХ МАТЕРИАЛОВ, ПРИМЕНЯЕМЫХ В СТРОИТЕЛЬСТВЕ

Количественная и качественная оценки коррозии и коррозионной стойкости

Контактная коррозия коррозионный ток пары

Коррозионная активность сред влияние на коррозию металлов

Коррозионная стойкость 12-ных хромистых сталей против атмосферной коррозии

Коррозионная стойкость и виды коррозии нержавеющих сталей

Коррозионная стойкость хромоникелевых сталей Веденеева, Н. Д. Томашов. Коррозия стали 1Х18Н9 в сернокислых растворах

Коррозионная стойкость хромоникелевых сталей против атмосферной коррозии

Коррозионно-стойкие повышенной сопротивляемости межкристаллитной коррозии — Виды поставляемого полуфабриката 256 Коррозионная стойкость 255 — Марки

Коррозия и коррозионная стойкость древесины под действием некоторых химических соединений

Коррозия и коррозионная стойкость древесных материалов

Коррозия и коррозионные среды

Коррозия металла оборудования и удаление из воды коррозионно-активных газов (деаэрация)

Коррозия металлов типы коррозионных разрушени

Коррозия оценка коррозионной стойкости

Коррозия под напряжением коррозионная усталость

Коррозия под статическим напряжением. Коррозионное растрескивание

Коррозия рения и сплавов на основе ниобия Томашов, Т. В. Матвеева. Коррозионное и электрохимическое поведение рения

Коррозия—Диаграммы Пурбе 1.7 Коррозионные диаграммы 1.8 — Необратимые потенциалы 1.7, 8 — Прямые и косвенные показатели коррозии 1.6 — Стандартный электродный

Коррозия—Диаграммы Пурбе 1.7 Коррозионные диаграммы 1.8 — Необратимые потенциалы 1.7, 8 — Прямые и косвенные показатели коррозии 1.6 — Стандартный электродный потенциал 1.6, 7 — атмосферная — Загрязненность воздуха 1.12 — Критическая влажность 1.12. — Образование фазовых и адсорбционных пленок

Краткие сведения о коррозии металлов и современные представления о коррозионной усталости

МЕТОДЫ ИССЛЕДОВАНИЯ КОРРОЗИИ И КОРРОЗИОННЫЕ ИСПЫТАНИЯ Электрохимические методы испытаний аустенитных сталей на стойкость к межкристаллитной коррозии

Межкристаллитная коррозия и коррозионное растрескивание под напряжением

Метод расчета распределения потенциала и тока контактной коррозии под тонкой пленкой коррозионной среды

Методика исследования атмосферной коррозии металлов во влажных субтропиках и коррозионная активность их районов

Методы коррозионных испытаний и способы оценки коррозии

НЕКОТОРЫЕ СПЕЦИФИЧЕСКИЕ МЕТОДЫ j УСКОРЕННЫХ КОРРОЗИОННЫХ ИСПЫТАНИЙ Определение склонности сплавов к межкристаллитной коррозии

Нержавеющие сплавы — Коррозионная стойкость 59, 60 — Коррозия Виды

ОСНОВЫ ТЕОРИИ КОРРОЗИИ МЕТАЛЛОВ Классификация и виды коррозионных процессов

Обработка поверхностная для защиты от коррозионного растрескивания ингибиторами коррозии водозамещающими

Образование коррозионного элемента и местная коррозия

Общие представления о коррозии под напряжением Общая характеристика коррозионно-механического разрушеНекоторые аспекты механики коррозионного разрушения

Определение времени до появления первого коррозионного очага или площади, занятой коррозией

Определение коррозии и значение коррозионной проблемы

Определение скорости коррозии электрохимическими методами (испытание с защищенным анодом или катодом на моделях коррозионных элементов)

Основные виды коррозии и коррозионных разрушений

Основы теории коррозии и методы ускоренных коррозионных испытаний металлов

Особенности коррозии и виды коррозионных разрушений сварных соединений

Оценка влияния вторичных явлений на скорость коррозии и глубину коррозионных разрушений

Оценка стойкости по времени до появления первого коррозионного очага или определенной площади коррозии

ПОЧВЫ И ГРУНТЫ КАК КОРРОЗИОННАЯ СРЕДА КОРРОЗИОННЫЕ ИССЛЕДОВАНИЯ И ИЗМЕРЕНИЯ Влияние состава и свойств почв и грунтов на развитие процесса коррозии

Питтинговая коррозия коррозионной среды

Применение ингибиторов коррозии для защиты промыслового оборудования в коррозионно-агрессивных водных и двухфазных средах

Применение коррозионной диаграммы для анализа процессов коррозии

Причины изменения скорости коррозии и коррозионно-безопасный интервал температур для любого топлива

Прочие способы защиты поверхностей от коррозии Методы снижения коррозионно-усталостных повреждений

Развитие коррозионных трещин (химическая коррозия под напряжением

Сквозная коррозия и коррозионное растрескивание

Скорость контактной коррозии коррозионной реакции

ТЕОРИЯ КОРРОЗИИ. КОРРОЗИОННАЯ СТОЙКОСТЬ МЕТАЛЛОВ И СПЛАВОВ 35 2. Исследование взаимосвязи между скоростями массопереноса и износа при коррозионном воздействии среды

Томашпв Исследование коррозии сплавов и разработка научных принципов коррозионного легирования

Физико-химические предпосылки селективной коррозии в S А А S в I S 8 - б Коррозионные процессы на сплавах

Формирование коррозионной при коррозии сплавов гомогенных 68, 74 гетерогенных

Электрохимические основы действия ингибиторов кислотной коррозии стали Кинетика коррозионных процессов в присутствии ингибиторов Дрожжин, А. М. Сухотин



© 2025 Mash-xxl.info Реклама на сайте