Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы Охрупчивание

Водородная хрупкость особенно опасна потому, что она иногда проявляется не сразу, а через некоторое время работы детали. В частности, было показано, что в а -f -титановых сплавах водород приводит к замедленному трещинообразованию. Было обнаружено, что водород ускоряет эвтектоидный распад нестабильной -фазы и по этой причине понижает термическую стабильность а -Ь -титановых сплавов. Охрупчивание а -f- -сплавов с нестабильной -фазой увеличивается с повышением температуры изотермического отжига (при температурах ниже эвтектоидной). Приложение напряжения еще более увеличивает охрупчивание. -Снлавы склонны к водородной хрупкости при очень высоких концентрациях водорода (> 0,2% вес.).  [c.427]


Наиболее трудно свариваются термически упрочняемые сплавы системы А1—Си—Mg (дуралюмины). При нагреве свыше 500 °С происходит оплавление границ зерен с образованием на расплавленных участках эвтектических выделений. После затвердевания эвтектика имеет пониженные механические свойства, что приводит к охрупчиванию 3. т. в. и снижению ее прочности по сравнению с прочностью основного металла. Свойства з. т, в, не восстанавливаются термической обработкой.  [c.236]

Азот увеличивает растворимость Fe и N в литии и термический перенос массы, азотирует поверхностный слой некоторых нержавеющих сталей. Водород в жидком сплаве натрия с калием вызывает охрупчивание ниобия. Присутствие углерода в жидком натрии приводит к науглероживанию поверхности нержавеющих сталей, находящихся в контакте с жидким металлом.  [c.147]

Сплав ОТ4 имеет хорошую пластичность при температуре обработки давлением, удовлетворительно сваривается аргоно-дуговой, контактной сваркой и сваркой под флюсом . Прочность сварного соединения составляет более 90% прочности основного металла. Сплав не склонен к охрупчиванию после нагрева до 350—400° С.  [c.279]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]


Механизм охрупчивания в жидких металлах аналогичен механизму КРН только при определенных сочетаниях жидких и напряженных твердых металлов, приводящих к межкристаллитному растрескиванию (табл. 7.2). Например, чтобы избежать катастрофического межкристаллитного растрескивания, ртутные котлы должны быть изготовлены и изготавливаются из - углеродистой стали, а не из титана, его сплавов или латуни. Адсорбированные атомы ртути снижают энергию межатомных связей на границах зерен напряженного титана или латуни, вызывая растрескивание, а в случае железа это не имеет места.  [c.142]

Наиболее эффективными легирующими компонентами, повышающими устойчивость железа к окислению на воздухе, являются алюминий и хром, особенно если использовать их с добавками никеля и кремния. Отмечено, что сплав 8 % А1—Fe обладает такой же устойчивостью к окислению, как и сплавы 20 % Сг— 80 % Ni [55]. К сожалению, применение стойких к окислению А1—Fe-сплавов ограничено их низкими механическими свойствами, малой прочностью защитных оксидных пленок и способностью алюминия образовывать нитриды, вызывающие охрупчивание. Некоторые из этих недостатков А1—Fe-сплавов преодолеваются посредством легирования хромом.  [c.204]

Заменять аустенитные сплавы на ферритные (например, марки 430 или низкоуглеродистую сталь с Сг и Мо — см. разд. 18,2). Однако ферритные сплавы могут подвергаться водородному охрупчиванию и вспучиванию в некоторых средах при контакте G более электроотрицательными металлами.  [c.324]

При высокой температуре в воздухе, азоте или водороде. Окисление на. воздухе протекает при температурах выше 450 С с образованием оксидов титана и нитридов. Температура воспламенения падает с повышением давления воздуха, что иногда приводит к локализованному выгоранию изготовленных из титанового сплава лопаток компрессоров газовых турбин [42]. Гидрид титана легко образуется при температурах выше 250 °С, а при более низких температурах — при катодном выделении водорода. Абсорбция кислорода, азота или водорода при повышенных температурах приводит к охрупчиванию металла.  [c.378]

Явление охрупчивания при повышенных температурах свойственно в основном малоуглеродистой стали. Легированные стали и цветные сплавы при повышении температуры обнаруживают большей частью монотонное возрастание 8 и такое же монотонное снижение °гр н Одр. На рис. 63 показаны соответствующие кривые для хромомарганцевой стали марки ЗОХГСА.  [c.70]

Пластические свойства при упрочнении в процессе старения существенно снижаются вплоть до охрупчивания сплава. При перестаривании они не восстанавливаются, а продолжают слабо снижаться.  [c.499]

В ряде случаев упорядочение в какой-либо системе часто приводит к довольно заметному снижению показателей деформируемости сплавов и их охрупчиванию при низкотемпературной пластической деформации. Примером этого служат сплавы системы Fe—Со (рис. 266,а), где легирование железа кобальтом сопровождается расщирением области -твердых растворов вплоть до чистого кобальта при температурах выше 1000° С.  [c.495]

В связи с этим низкопрочные сплавы менее подвержены водородному охрупчиванию.  [c.345]

I мм из рекристаллизованного ниобия и его сплава с 1 % Zr в гелии высокой чистоты (ТУ 51-689—75) приводит к охрупчиванию вследствие наличия в нем примесей [32].  [c.107]

Пластичность молибдена и его сплавов существенно зависит от чистоты внешней среды при отжиге. Так, при отжиге в атмосфере аргона, загрязненного примесями углеводородов, происходит насыщение углеродом, понижение прочности и охрупчивание.  [c.122]

Чувствительны к термической обработке (при недостаточном контроле может наблюдаться охрупчивание). Пластичность сварного шва хуже, чем у а- сплавов. Сохраняют достаточную прочность лишь до температур порядка 430° С  [c.371]

Сплав ВТЗ-1 обладает стабильностью свойств после длительных выдержек при температурах 450 и 500 С в течение 100 час. в отличие от сплава ВТЗ, который склонен к охрупчиванию при этих же режимах.  [c.374]

Механические свойства сплава ВТЗ-1 при 20° С после циклических испытаний на охрупчивание 110 режиму 400° С, напряжение 20 кГ/лии , 90 час., затем 500° С, напряжение 20 кГ/мм , 15 час. указаны в табл. 14.  [c.374]


Сплав удовлетворительно обрабатывается резанием. Коррозионная стойкость сплава ВТ4 близка к коррозионной стойкости технического титана ВТ1 и ВТ5. Сплав ВТ4 практически не склонен к охрупчиванию при температуре 350° С и выдержке до 100 час.  [c.376]

Сплав может упрочняться термической обработкой прочность сплава после закалки из области (а + (5) и последующего старения при 450—650 С может достигать 120 кГ мм . Справ не подвергается охрупчиванию при работе под напряжением при температурах до 500° С.  [c.380]

В более чистых по примесям ( С, 5, Р и др.) металлйх и сплавах охрупчивание проявляется в меньшей степени.  [c.96]

Ряд высокохромисилх сталей в зависимости от рея има термообработки и температуры эксплуатации изделия могут изменять свои структуру и свойства, в основном приобретая хрупкость. В зависимости от химического состава стали и влияния термического воздействия в хромистых сталях наблюдаются 475°-ная хрупкость хрупкость, связанная с образованием сг-фазы охрупчивание феррита, вызываемое нагревом до высоких температур. 475°-ная хрупкость появляется в хромистых сплавах и сталях при содержании 15—70% Сг после длительного воздействия температур 400—540° С (особенно 175 С). Добавки титана и ниобия ускоряют процесс охрупчивания при 475°.  [c.260]

Отжиг этих сплавов (напрпмер, для рекристаллизации) может привести к охрупчиванию, вследствие процессов >порядочепня (образование упорядоченных твердых растворов типа Au u и Ali ua).  [c.631]

Несущую способность прессовых соединений можно повысить также металлизацией и термодиффузионным насыщением (например, горячим цинкованием), которое в отличие от гальванических покрытий не вызывает водородного охрупчивания металла. Дальнейшего повышения несущей спо-. собности можно достичь нанесением разнородных покрытий, например цинкового покрытия на одну поверхность и медного на другую. В результате взаимной диффузии атомов металлов можно ожидать образования в зоне контакта промежуточных структур более высокой прочносш, чем металлы однородных покрытий (например, сплавов типа латуней при сочетании цинкового и медного покрытий).  [c.485]

На рис. 7.11 показаны участки I и II роста трещины в Al-сплаве (1,2—2,0 % Си 2,1—2,9 % Mg 0,3 % Сг 5,5 % Zn) в растворе Na l, а также в жидкой ртути (охрупчивание в жидких металлах) при комнатной температуре. Скорости растрескивания в ртути выше, чем в водных растворах, но характер зависимости скорости от интенсивности напряжения одинаков. Металлургические факторы, влияющие на скорость роста трещин в одной среде, аналогичным образом влияют и в других. Вполне возможно, что некоторые аспекты механизма растрескивания справедливы в различных условиях.  [c.147]

Сплавы Сг—А1—Fe обладают исключительно высокой жаростойкостью, благодаря устойчивости к окислению Сг и А1. Например, сплав 30 % Сг, 5 % А1, 0,5 % Si (торговое название мегапир) стоек на воздухе до 1300 °С. Аналогичной стойкостью обладает и сплав 24 % Сг, 5,5 % А1, 2 % Со (торговое название кантал А). Эти сплавы применяют, в частности, для изготовления спиралей и других деталей электронагревательных приборов и печей. К недостаткам этих сплавов относятся низкая жаропрочность и склонность к охрупчиванию при комнатной температуре после продолжительного нагревания на воздухе. Охрупчивание вызвано, в частности, образованием нитрида алюминия. По этой причине спирали в нагревательных элементах должны быть фиксированы, а для беспрепятственного термического расширения и сжатия их обычно гофрируют.  [c.207]

Однако, если в отсутствие водорода соответствие какой-либо Ашкромеханпческой модели вязкости разрушения (деформационной или силовой) данпому материалу достаточно лабильно и определяется преимущественно свойства.ми самого сплава, то при водородном охрупчивании реализация этого соответствия существенно зависит от распределения водорода вблизи вершины трещины и его влияния на значение Ое.  [c.358]

Взаимодействие с водороскш. Водород активно взаимодействует с титаном и поглощается им в больших количествах. Растворимость водорода в титане с ростом температуры снижается и в процессе плавки большая часть водорода удаляется из мета.пла (табл. 89). Водород - вредная примесь он стабилизирует а-фазу и вызывает охрупчивание сплава. По этой причине содержание водорода в сплаве не должно превышать 0,010 - 0,015%. Диаграмма системы Ti - Н2 приведена на рис. 144.  [c.301]

При нагреве никеля и его сплавов в атмосфере, содержащей серу, последняя диффундирует в металл и, образуя соединение NiaSj, способствуют охрупчиванию металла. Всего лишь 0,005 % S достаточно для того, чтобы металл стал хрупким. Поэтому химический состав в пламенных печах должен быть абсолютно чист по сере.  [c.525]

Здесь предполагается, что предельное критическое напряжение Ой зависит от концентрации водорода С в данном микрообъеме [381]. Расчет напряженно-деформированного состояния в окрестности вершины трещины [368] (рис. 41.3) показывает, что при л б эффективное напряжение Oef определяется практически растягивающим напряжением о , имеющим максимум при х = — Хш 26, а при а ss б в зависимости от значения параметра а в соответствии с (41.20) доминирующим фактором для напряжения Oef может оказаться интенсивность деформаций ер (см. рис. 41.5, а). Это, в частности, означает, что в отсутствие водорода, когда Ос можно считать константой, критическое условие (41.20) может быть выполнено при достижении в окрестности вершины трещины предельных деформаций е, или напряжений Оу. В связи со сказанным известные микромеханическпе критерии вязкости разрушения [253], основанные на понятиях критической деформации или критического напряжения, можно считать предельными случаями более общего критерия, получающегося из условия (41.20). Однако, если в отсутствие водорода соответствие какой-либо микромеханпческой модели вязкости разрушения (деформационной или силовой) данному материалу достаточно стабильно и определяется преимущественно свойствами самого сплава, то при водородном охрупчивании реализация этого соответствия существенно зависит от распределения водорода вблизи вершины трещины и его влияния на значение Ос.  [c.334]


К водородному охрупчиванию наиболее чувствительны высокопрочные низкопластпчные сплавы, для которых характерна высокая степень трехосиости напряженного состояния и высокий градиент напряжений впереди вершины трещины, являющийся причиной проникновения водорода в зону предразрушения. С другой стороны, дефектная неравновесная структура таких сплавов является наиболее уязвимой с точки зрения водородного охрупчивания. При переходе к более пластичным и менее прочным материалам снижается объемность напряженного состояния, его зона смещается дальше от вершины трещины, при этом падает градиент напряжений. Все это сказывается ва условиях переноса водорода в зону предразрушения и накопления там критической концентрации, необходимой для образования сепаратной микротрещины.  [c.345]

Явление охрупчивания при повышенных температурах свойственио в основном малоуглеродистой стали. Легированные стали и цветные сплавы при повышении температуры обнаруживают большей частью монотонное возрастание  [c.80]

Для сталей высокой прочности, алюминиевых и титановых сплавов в широком интервале температуры критические значения коэффициентов интенсивности напряжений мало зависят от температуры. Поэтому оценку сопротивления хрупкому разрушению элементов конструкций из таких материалов следует проводить по минимальным значениям / i . Как показано в 3, при определении по уравнениям (3.13) критических значений температуры элементов конструкций имеет существенное значение учет роли размеров напряженных сечений, остаточной напряженности, деформационного старения и охрупчивания в условиях эксплуатации. Эти факторы принимаются во внимание путем введения соответствующих экспериментально устанавливаемых температурных сдвигов А нр, и АГкрг (см. рис. 3.8).  [c.64]

Отрицательное влияние дополнительного растворения W и С в кобал1,те связано со снижением пластичности связки и охрупчиванием сплава, приводяш,ими к выкраишванию карбидных зерен и их скоплений в процессе резания.  [c.219]

Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкрнсталлитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-  [c.23]

Своеобразное действие па титан оказывает примесь водорода, которая еще 41едавно считалась допустимой в довольно значительных количествах. Действительно, водород почти не влияет на прочность и пластичность титана при статическом растяжении, но даже при содержании 0,02% водород может оказывать вредное влияние на такие характеристики титана, как чувствительность к надрезу и к длительному действию постоянно действующих нагрузок. Водород способен вызывать медленное охрупчивание титановых сплавов  [c.362]


Смотреть страницы где упоминается термин Сплавы Охрупчивание : [c.294]    [c.524]    [c.626]    [c.373]    [c.278]    [c.284]    [c.193]    [c.25]    [c.369]    [c.226]    [c.369]    [c.370]    [c.374]   
Термопрочность деталей машин (1975) -- [ c.35 ]



ПОИСК



Охрупчивание



© 2025 Mash-xxl.info Реклама на сайте