Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб пластин на упругом основании

Дифференциальное уравнение изгиба пластины на упругом основании с двумя коэффициентами постели приводится к виду  [c.512]

В статьях [55, 56] предлагается новый вариант теории трехслойных пластин с несжимаемым в поперечном направлении заполнителем, основанный на гипотезе ломаной нормали. Уравнения равновесия в перемещениях получены с помощью принципа Лагранжа. Формальным введением малого параметра в дифференциальные уравнения решение исходной задачи сведено к итерационному процессу, содержащему решение задачи об изгибе пластины на упругом основании и плоской задачи теории упругости. Точное решение получено для прямоугольной шарнирно-опертой по контуру пластины, найдена оценка погрешности приближенного решения, получаемого после произвольного числа итераций. Этими же авторами предложен метод расчета осесимметричных круглых трехслойных пластин с легким сжимаемым заполнителем на действие нагрузок, симметричных и обратносимметричных относительно срединной плоскости. Разложение нагрузок на составляющие позволяет упростить определение постоянных, входящих в общее решение задачи.  [c.13]


В качестве примера рассмотрим воздействие вертикальной нагрузки от воздушного судна на аэродромное покрытие, лежащее на упругом основании, и оценим степень учета динамики воздействия по отношению к статическому нагружению. Как было показано выше, работа плит монолитного и сборного цементобетонных покрытий при воздействии вертикальной самолетной нагрузки хорошо описывается известным дифференциальным уравнением изгиба изотропной пластины в предположении справедливости гипотез Кирхгофа-Лява для упругого основания [44]  [c.173]

Вклад в усовершенствованные исследования напряжений в теории корабельных конструкций был сделан двумя русскими инженерами А. Н. Крыловым и И. Г. Бубновым. А. Н. Крылов (1863— 1945 гг.) занимался развитием практических методов исследования колебаний кораблей и методами исследования напряжений в киле, который рассматривался как балка на упругом основании. И. Г. Бубнов (1872—1919 гг.) занимался теорией изгиба прямоугольных пластин, в которых принимались во внимание не только поперечные силы, но также силы, действующие в срединной плоскости пластины. Он также исследовал изгиб прямоугольных пластин, защемленных по всем краям, и подготовил первую удовлетворительную таблицу изгибающих моментов и прогибов для этого сложного случая. Благодаря работе этих двух выдающихся инженеров в России были наиболее современные монографии по теории конструкций кораблей.  [c.659]

Большую специфику имеют задачи об изгибе упругих гибких балок и пластин, лежащих на сплошном упругом основании, или задачи об изгибе гибких балок и пластин под воздействием штампов, контактирующих с ними.  [c.716]

На рис. 9.63, а изображена схема прибора для контроля диаметров шариков [91 ]. Подвижная часть прибора подвешена к корпусу 1 на двух параллельных упругих пластинах 2, на которые поставлены накладки 3, обеспечивающие изгиб пластин у мест крепления. Пластины при измерениях имеют очень небольшие перемещения. На рис. 9.63, б дана схема упругой опоры, у которой деталь 4, как и в предыдущем случае, подвешена на двух параллельных пластинах 2, прикрепленных к неподвижному основанию 1.  [c.581]

Прибор снабжен стрелкой 6, припаянной к лапке 3. Лапка 3 надевается на упругую пластину диффузора и нижней частью упирается в упругую пластину у ее основания. Благодаря действию груза 4, весом 83 г, подвешенного к стрелке 6, пластина диффузора изгибается.  [c.325]

В данной работе предлагается принципиально новый метод расчета цилиндрических складчатых систем, основанный на алгоритме МГЭ для стержневых систем. Теоретической основой метода является вариационный метод Канторовича-Власова. Решение задачи Коши изгиба прямоугольной пластины представлено в 6.2. Его можно использовать для расчета пластинчатых систем в случаях, когда плоским напряженно-деформированным состояниям элементов можно пренебречь. Алгоритм МГЭ устраняет практически все отмеченные выше недостатки существующих методов. Так, для формирования системы разрешающих уравнений типа (1.38) не используются матричные операции, не рассматривается основная система, снимаются ограничения на условия опирания пластин по торцам (граничные условия могут быть любыми, а каждая пластина может иметь смешанные граничные условия и включать как прямоугольные, так и круглые элементы), матрица коэффициентов А сильно разрежена, хорошо обусловлена и может приметаться в задачах статики, динамики и устойчивости, возможен учет ортотропии, ребер жесткости, упругого основания, переменной толщины и т.д. Таким образом, алгоритм МГЭ охватывает практически наиболее общий случай расчета. Перечисленные преимущества сопровождаются, как это бывает всегда, и недостатками. В частности, порядок матрицы А существенно больше порядка матрицы реакций метода перемещений. Однако этот недостаток  [c.232]


Заслуживает обсуждения сравнение относительных преимуществ двух методов определения т], основанных на использовании уравнений (5-4.9) и (5-4.41). В обоих случаях измеряется кинематика движущейся пластины, но в то время как при использовании уравнения (5-4.9) предполагается, что измерение напряжения производится на неподвижной пластине, использование уравнения (5-4.41) включает измерение движения заторможенной пластины. Поскольку на практике измерение напряжения всегда связано с измерением изгиба некоторого упругого ограничивающего элемента, два метода различаются в основном в следующем уравнение (5-4.9) требует использования весьма жестких ограничений, так что заторможенная пластина почти неподвижна, в то время как уравнение (5-4.41) позволяет использовать более свободный ограничивающий механизм (в установках с вращением это обычно работающий на скручивание стержень). При использовании уравнения (5-4.41) следует позаботиться о том, чтобы частота вибрации не совпадала с собственной частотой заторможенной пластины oq. Действительно, при оз = соц имеем 3=0, и уравнение (5-4.40) или (5-4.41) не позволяет определить т]. В дальнейшем будут приведены лишь основные результаты, относящиеся к течениям более сложной геометрии за всеми подробностями читатель отсылается к соответствующей технической литературе.  [c.200]

Матричный метод расчета упругих конструкций основан на решении дифференциальных уравнений изгиба оболочек и пластин и кручения колец с применением нормальных фундаментальных функций и матриц, что является математическим выражением метода начальных параметров в строительной механике. Преимущества нормальных фундаментальных функций сказываются при построении разрывных решений дифференциальных уравнений, что также использовано в работе [2].  [c.205]

Описывается основанный на вариационном принципе метод расчета компонентов напряженного состояния, а также границы упругой и пластической зон при изгибе прямоугольной консольной пластины силами, равномерно распределенными по свободному краю.  [c.37]

Установим соотношения упругости при изгибе многослойных композитов [6]. Будем считать, что слои материала идеально связаны между собой (отсутствует проскальзывание слоев). Классическая теория пластин, основанная на гипотезах Кирхгофа—Лява, дает следующие выражения для деформаций (см. 4.2)  [c.28]

Здесь предлагается метод расчета цилиндрических складчатых систем, основанный на выводах первой главы и первого раздела. Теоретической основой метода является, как и для рассмотренных выше двумерных задач, вариационный метод Канторовича-Власова. Уравнение, описывающее изгиб прямоугольной пластины, представлено в п. 7.2, уравнение изгиба круглой пластины - в п. 7.3. Построим аналогичное уравнение для плоской задачи теории упругости прямоугольных пластин.  [c.480]

На основании упругой аналогии (см. гл. 4) задачи о пластическом изгибе и ползучести пластин имеют аналогичные математические формулировки. Ползучесть изгибаемых пластин при степенном законе подробно рассмотрена на стр. (623), приводимые в ней решения можно переносить на случай пластической деформации пластин, если вместо скорости прогиба 01 писать прогиб ш, а постоянной В придавать значение, соответствующее закону (22).  [c.621]

Кроме описанных дифференциальных и клиновых МСХ, были экспериментально исследованы несколько образцов роликовых МСХ. Были изучены причины буксования МСХ (см. подразд. 10). На основании этой части исследований даны рекомендации, касающиеся конструкции и технологии изготовления фрикционных МСХ, создана методика гидродинамического расчета. Для определения работоспособности вновь созданных фрикционных МСХ для ИВ весьма эффективна экспериментальная проверка заклинивания при ударном приложении внешней нагрузки удар наносится по ведомой детали МСХ в направлении, соответствующем заклиниванию МСХ. Механизм считается нормально работающим, если не обнаруживаются даже микроперемещения ведущей части относительно ведомой в направлении удара. Для регистрации перемещений рекомендуется использовать гибкую пластину, одним концом заделанную на ведомой детали МСХ, а другим опирающуюся на ведущую часть. На пластину наклеены тензорезисторы, включенные в обычную схему измерений. При изменении относительного положения деталей вследствие удара в пластине возникают напряжения изгиба, которые регистрируются осциллографом. На рис. 53 приведена типичная осциллограмма ударного заклинивания и расклинивания дифференциального МСХ. Участок ей осциллограммы соответствует положению МСХ до заклинивания. Участок Ьс характеризует процессы заклинивания, расклинивания и поворота ведущих элементов механизма под действием сил упругости в сторону, противоположную направлению момента, создаваемого ударной нагрузкой. Участок аЬ соответствует новому положению МСХ. Тангенциальные перемещения в контакте колодок и шкива в направлении момента, создаваемого ударной нагрузкой, отсутствуют.  [c.98]


Ниже изложен метод построения такого решения аналогичный известному методу А. Н. Крылова в теории изгиба балок на упругом основании. Суть этого метода такова. Участки пластины (с постоянной нагрузкой) нумеру10тся от центра к периферии. На каждом участке выражение для частного решения принимается равным сумме соответствующего выражения на предыдущем участке и частного решения, отражающего влияние дополнительных нагрузок, действующих на данный участок. Это дополнительное решение строится таким образом, чтобы в начале участка оно обращалось в нуль вместе со своей первой производной. Тогда присутствие этого решения не изменяет значений й и на внутренней границе участка, и постоянные и С2 оказываются для данного участка такими же, как для предыдущего.  [c.23]

Исследование задач о пластинах (и балках на упругом основании), проведенное в этой главе, следует установленной схеме представлений НМГЭ и ПМГЭ и до некоторой степени обладает преимуществами по сравнению с применимыми к данному случаю методами, опубликованными в других работах. Задачи изгиба тонкой пластины не только представляют значительный практический интерес, но и показывают, как при помощи МГЭ учитываются известные ограничения двумерной теории, аппроксимирующей трехмерные задачи. Кроме того, обобщение, позволяющее исследовать пластины на упругом основании, дает примеры фундаментальных решений все возрастающей сложности, так что привлекательность использования стандартного для всех этих задач алгоритма в некотором отношении утрачивается из-за необозримости самого фундаментального решения. Пластины и упругое основание поэтому лучше разделять и рассматривать как двухзонную задачу специального вида, в которой  [c.328]

Первый подход был основан на разработке математических моделей работы покрытий в рамках уточненных (без гипотез Кирхгофа-Лява) неклассических теорий изгиба многослойных пластин на упругом основании. В этом направлении работали В.К. Присяжнюк, B. . Сипетов и др. Их работы базировались на исследованиях з еных киевской школы, где под руководством В.Г. Пискунова и А.О. Рассказова получила развитие теория изгиба пластин, ориентированная на решение инженерных задач. К этому направлению следует отнести и исследования, в которых приняты за основу другие неклассические теории изгиба, в частности исследования Э.И. Григолюка [67,68]. Такой подход, безусловно, дает возможность рассмотреть работу всех слоев покрытия с з етом деформаций сдвига и обжатия. Однако, как показывает практический опыт, при решении задач о работе конструкций с учетом реального расположения швов в слоях покрытия возникают определенные сложности.  [c.30]

В упоминавшейся работе Си, Париса и Эрдогана [1] был рассмотрен вопрос об определении коэффициентов интенсивности напряжения при изгибе и рассмотрен ряд примеров. Изгибные напряжения в пластине, имеющей трещину и покоящейся на упругом основании, были рассмотрены Энгом, Фолиасом (Folias) и Вильямсом [1]. Здесь же отмечена аналогия между рассмотренной задачей и задачей о деформировании сферической оболочки с малой начальной кривизной.  [c.425]

Зинкина П. Т. Упруго-пластический изгиб пластин, лежащих на упругом основании. Ташкент, 1951.  [c.112]

Такой гипотезой является введение закона распределения напряжений или перемещений по толщине оболочки. Теория изгиба пластин и пологих оболочек, основанная на аппроксимации закона распределения касательных напряжений по толщине некоторой известной функцией, построена в монографиях [5, 6]. Аналогичная гипотеза использована в статьях [96, 97] для расче- та цилиндрической оболочки. Общая теория оболочек, основанная на введении некоторой средней по толщине деформации сдвига, связанной с перерезывающей силой через обобщенную упругую постоянную, приведена в монографии [62]. Уравнения, основанные на аппроксимации закона распределения перемещений (в том числе и прогиба) по толщине оболочки, получены в работе [72], более общие уравнения представлены в статье [71].  [c.88]

Важную роль в развитии теории упругости сыграли работы русских ученых. Фундаментальные результаты в развитии принципа возможных перемещений, теории удара, а также интегрирования уравнений динамики принадлежат Остроградскому ). Генерал от артиллерии Гадолин ) исследовал напряжения в многослойных цилиндрах, построив тем самым основы проектирования стволов артиллерийских орудий. Журавский изложил современную теорию изгиба балок. Он широко применял методы сопротивления материалов при проектировании многочисленных мостов железных дорог. Существенное продвижение в решении плоской задачи теории упругости связано с трудами Колосова ) и Мусхелишвили ), которые впервые применили метод, основанный на использовании функций комплексного переменного. Бубновым ) решен ряд задач об изгибе пластин.  [c.12]

В 1882 г. Фохт (Voigt [1882, 1]) подверг критике предположение Корию, указав, что простая констатация прозрачности, без других подтверждений, не дает оснований для такого заключения относительно изотропии упругих свойств. Однако он утверждал и доказал, что решить этот вопрос можно, подвергнув испытаниям на кручение и изгиб образцы с разной ориентацией, вырезанные из стеклянной пластины с различной глубины в ней. При изгибе нейтральная плоскость выбиралась параллельной короткой или длинной сторЬне прямоугольного поперечного сечения образца. Таким образом, сравнивая определенные в опыте значения и jj, и вычисленные по ним значения коэффициента Пуассона, он мог установить, что действительно имел дело с изотропным твердым телом. Хотя испытания на изгиб и кручение делались на одних и тех же образцах, они не проводились одновременно, как в экспериментах Кирхгофа. Детали установки Фохта были разработаны им самим и описаны в его докторской диссертации в 1876 г., посвященной определению постоянных упругости каменной соли.  [c.357]


Я выбрал относящиеся к нашему обсуждению результаты из обширных таблиц Фохта для измерений при кручении и изгибе девяти образцов, вырезанных из пятидесятимиллиметровых по толщине пластин, изготовленных из зеленоватого стекла с удельным весом 2,540 (и показателем преломления 1,55). Он отметил, что, несмотря на значительную толщину, в поляризованном свете стекло оставалось бесцветным ). Начиная с глубины 6 мм, стекло оказалось вполне изотропным, о чем судил Фохт на основании сравнения значений модуля упругости при сдвиге, определенного в девяти опытах при шести различных комбинациях длины образца и его ориентации в пластине, как это видно из данных табл. 73. Образцы, обозначенные в таблице символами 1 и II, были вырезаны вблизи поверхности и имели постоянные упругости, отличные от постоянных упругости для образцов с большей глубины. Для последних среднее значение коэффициента Пуассона составило 0,213 при наименьшем 0,211 и наибольшем 0,218.  [c.358]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]

Биметаллические чувствительные элементы применяют в приборах для измерения температур, компенсации температурных ошибок, возникающих в передаточных механизмах и чувствительных упругих элементах, а также в качестве терморегуляторов температурных реле. Их принцип действия основан на свойстве биметаллических пластин изгибаться в сторону материала с меньшим коэффициентом линейного расширения при изменении температуры. Для этой цели биметаллическую пружину изготовляют из двух пластин с различными коэффициентами линейного расширения, сваренными или спаянными по длине. Пластину, материал которой имеет ббльший коэффициент линейного расширения, называют активным слоем, а с меньшим — пассивным слоем.  [c.205]


Смотреть страницы где упоминается термин Изгиб пластин на упругом основании : [c.208]    [c.187]    [c.514]    [c.279]    [c.11]    [c.207]    [c.362]    [c.97]    [c.403]    [c.253]    [c.512]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.354 ]

Теория упругости и пластичности (2002) -- [ c.132 ]



ПОИСК



350 — Упругость при изгибе

Изгиб на упругом основании

Основание

Пластина на упругом основании

Пластины изгиб

Упругое основание



© 2025 Mash-xxl.info Реклама на сайте