Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вытяжка Работа деформации

При определении мощности электродвигателя обычно учитывают работу деформации при вытяжке работу, затрачиваемую на преодоление сопротивлений пневматических или гидропневматических подушек. Работу, затрачиваемую на упругую деформацию частей пресса, обычно не учитывают.  [c.588]

Работа деформации. Работа деформации заготовки при вытяжке при полном втягивании заготовки в матрицу  [c.126]

Работу деформации заготовки при вытяжке вычисляем по формуле (8)  [c.129]


Работа деформации при первой вытяжке  [c.506]

Работа деформации при последующей вытяжке  [c.507]

Работа деформации Лдт (Дж), необходимая для вытяжки,  [c.247]

В других случаях наклеп создают искусственно. Например, цепи и тросы подвергают предварительной вытяжке выше предела текучести для того, чтобы они стали. менее пластичными и во время работы не получили больших деформаций.  [c.40]

В работе [371] подобная задача решалась для молибденового сплава (суммарное содержание кислорода, азота и углерода не более 0,015 % (мае.)), который прошел предварительную (или первичную) обработку горячим прессованием при температуре 1200 °С с вытяжкой Л = 7,7 (т. е. е — 2,04). Для выявления особенностей повторной пластической деформации параллельно исследовали образцы в рекристаллизован-ном состоянии С тем же размером зерна (О == 40 мкм), что и в исходной заготовке перед первичным прессованием.  [c.174]

Последнее, вызываемое упругими деформациями и собственным весом ремня, обеспечивает нормальную работу передачи. Натяжение в результате остающихся деформаций (вытяжки) ремня постепенно падает, и ремни приходится периодически подтягивать (перешивать). В связи с этим предварительное натяжение в обыкновенных приводах обычно даётся с запасом н превышает нормальное натяжение ремня, необходимое для правильной работы передачи. При этом чем короче межцентровое расстояние, тем меньше эффект от собственного веса ремня и тем больше должно быть предварительное натяжение для передачи необходимой мощности, а следовательно, тем быстрее наступает вытяжка и чаще требуется перешивка ремня.  [c.431]

Вырубка, пробивка, отрезка, обрезка. ... Гибка, вытяжка, формовка, чеканка..... Работа, затрачиваемая на трение. ...... Работа упругой деформации пружинения пресса с С-образной станиной........ Работа, затрачиваемая на сжатие буферов, съемников выталкивателей.......... Ai = тР Ai = Ph Ai = (0.2 ч- 0,4) Л, Дз = 0,5Рл А, = Рг/1,  [c.832]

Технологические испытания. В ряде случаев для качественной или сравнительной оценки технологических свойств металла пользуются технологическими пробами (рис. 1.14). Испытания проб показывают способность металла претерпевать определенные деформации, аналогичные получающимся в конкретных условиях работы. Такими пробами являются пробы на изгиб, навивание, выдавливание, осадку. Пробы на изгиб выполняют для плоского, фасонного и специального проката, труб, сварных швов, чтобы избежать при их изготовлении трещин, надрывов, изломов и др. Изгиб может быть на определенный угол (рис. 1.14, а), до параллельности (рис. 1.14, б) и соприкосновения сторон (рис. 1.14, в). Производят также пробы на сплющивание труб (рис. 1.14, г). Пробы на навивание выполняют для проволоки из черных и цветных металлов диаметром от 0,2 до 10 мм. Кусок проволоки навивают от 5 до 10 витков на оправку заданного диаметра или на такую же проволоку. Проба на выдавливание служит для определения пригодности металла к холодной штамповке и вытяжке. Проба на осадку определяет способность холодного металла принимать заданную форму при сжатии.  [c.44]


Когда общая деформация детали по условиям работы остается неизменной (например, вытяжка болта в резьбовом соединении), увеличение с течением времени пластической деформации приводит к уменьшению упругой деформации и падению напряжения (в данном случае к ослаблению резьбового соединения). Это называют релаксацией напряжений.  [c.21]

Предельная несущая способность де -талей конструкций при вязком состоянии материала рассматривается как такая стадия их нагружения, после которой существенное изменение размеров происходит без значительного увеличения нагрузки, т. е. наступает быстро развивающееся формоизменение. В ряде конструкций предельное состояние такого типа определяется наибольшими допустимыми остаточными перемещениями из условий сопряженной работы с другими узлами. Например, допустимая вытяжка диска турбомашины зависит от регламентируемых зазоров между ротором и корпусом. Образованию предельных состояний предшествует существенное упруго-пластическое перераспределение деформаций и напряжений, поэтому расчетное определение усилий, отвечающих предельным состояниям, требует решения соответствующих задач методами теории пластичности и в частных случаях способами сопротивления материалов. При повторном, ограниченном по числу циклов нагружении за пределами упругости перераспределение напряжений и деформаций может приводить к затуханию накопления пластической деформации, т. е. приспособляемости.  [c.5]

Радиусный ролик типа И применяют, как правило, для ведения процесса на мощных специализированных станках по схеме обратной вытяжки. Ролики типа К являются вспомогательными и предназначены для исключения возможности образования наплыва. Эти ролики применяют для калиброванной схемы ротационной вытяжки (см. рис. 8), где они работают совместно с роликами типа Е и Ж-В процессе работы калибрующий поясок вспомогательного ролика перекрывает зону очага деформации, создаваемую рабочими роликами, препятствуя образованию наплыва.  [c.249]

На первой операции вытяжки при работе с сильным прижимом можно считать, что фланец заготовки из анизотропного металла находится в объемно-напряженном и плоско-деформированном состояниях, так как деформации в направлении, перпендикулярном плоскости листа XY (по оси Z), весьма малы. Тогда, приняв, что в уравнении приращения деформаций (110) величина de = О, из этого же выражения получаем  [c.178]

Для того чтобы можно было работать при большом (выгодном) радиусе закругления матрицы, не опасаясь образования складок, в последнее время применяют штампы с дополнительным радиусным или коническим прижимом, который во время работы прижимает заготовку также и по закругленной или конической части матрицы (рис. 108). Подобный способ вытяжки с дополнительным сферическим или коническим прижимом (применяемый для тонких металлов s < 2 мм) позволяет увеличить степень деформации (уменьшение коэффициента вытяжки mj до 0,40) без образования складок. Этот способ становится особенно выгодным при вытяжке изделий сферической формы, когда необходимо обеспечить прижим фланца заготовки до конца процесса.  [c.213]

Особенностью матриц подобного типа является пространственный профиль вытяжной кромки, т. е. кромки при входе в рабочий поясок. Этот профиль получается в результате пересечения конической поверхности заходной части матрицы от и ниже с контуром рабочего отверстия (5 ,. Так как при любом контуре коробчатой детали на участках с большей кривизной в плане вытяжная кромка располагается выше и вступает в работу раньше участков контура с малой кривизной, то получается более равномерная деформация и создаются более благоприятные условия для вытяжки вследствие повышенной устойчивости образовавшегося  [c.357]

Пресс двойного действия (см. рис. 7.5) имеет основной кривошипно-ползунный механизм пуансона 3, интервалы движения которого конструктор не может существенно изменять, поэтому в циклограмме (рис. 7.8,6) исходной является первая строка основного механизма, к работе которого приспосабливают перемещение остальных ведомых звеньев. Так, например, в центральном кривошипно-ползунном механизме прямой и обратный ход ползуна происходят при повороте кривошипа на 180°, однако часть прямого хода ползун совершает вхолостую, а затем производит вытяжку фазовый угол, соответствующий процессу прессования, зависит от отношения в личины деформации к ходу ползуна. Движение вспомогательного ползуна 4 рассчитано так, чтобы прижим был обеспечен до начала вытяжки, а отвод произошел после завершения штамповки.  [c.219]


Кроме уже упоминавшихся исследований влияния различных материалов на коррозионное поведение алюминия, проводились работы по изучению действия деформации и толщины материала на процесс коррозии. Общепринято считать, что холодная деформация алюминия прокаткой, прессованием, вытяжкой и т. п. приводит к уменьшению стойкости. С электрохимической стороны это объясняется сдвигом потенциала в отрицательную сторону.  [c.509]

Рабочая вязкость лака определяется условиями работы узла нанесения. В кабельной промышленности при производстве эмалированных проводов применяют определенные метод >1 и соответствующие конструкции узлов нанесения, обеспечивающие получение качественных эмалированных проводов того или иного сечения. Так, для проводов микронных сечений оптимальным оказалось нанесение лака с помощью фетров, к которым дозирующими насосами подается лак. В этом случае используют лаки с условной вязкостью по вискозиметру ВЗ-4 25—65 с (0,1—0,4 Па-с). Для обеспечения нормальной работы калибров необходимы лаки с условной вязкостью по вискозиметру ВЗ-4 120—300 с (0,5—2,0 Па-с). Нанесение лаков с большей вязкостью возможно, но требует снижения скоростей движения проволоки. Кроме того, как было показано выше, существует предельное значение вязкости лака при нанесении этим методом. Превышение его приводит к деформации, вытяжке и даже обрыву проволоки.  [c.20]

Если бы этот же пресс использовали для свободной ковки, в частности для вытяжки (ф = 0,6 и = 8 см), то для этого случая Я = 2, т. е. работа по упругой деформации в 2 раза меньше полезной работы. Последнее обстоятельство обязывает строить штамповочные прессы более жесткими, чем ковочные.  [c.308]

Выясним механизм деформирования при вытяжке с утонением с учетом влияния основных факторов и стремления получить максимально простые зависимости с помощью приближенного метода работ. Так как особый интерес представляет отыскание напряжений, действующих в стенках протянутой части заготовки на этапе установившегося деформирования, то составляющие работы деформирования найдем как средние для всего деформируемого объема, а не для бесконечно малых его объемов, что является необходимым условием при решении задачи по отысканию поля напряжений в очаге деформации [47 ].  [c.201]

На третьем участке (в) происходит уменьшение поперечных размеров шейки. Достигнув определенных поперечных размеров, шейка перестает суживаться с этого момента начинается четвертый участок диаграммы напряжений (отмечен на рис. 4.94, в буквой г). Однако шейка захватывает все больший участок по длине образца. На образце создаются области, в которых резко отличаются поперечные размеры шейки и крайних участков. К тому моменту, когда шейка распространится на всю длину образца (конец участка г), деформации достигают сотен процентов. В процессе развития шейки материал ориентируется — молекулярные цепи расправляются и располагаются вдоль образца (вдоль направления растя-нсения). Материал приобретает свойство анизотропности—большую прочность вдоль направления растяжения. Этим (ориентационным) упрочнением и объясняется тот факт, что, пока шейка не охватила по длине весь образец, утонения (сужения) ее не происходит — шейка легче распространиться на еще не охваченные ею участки, чем сужаться. Так обстоит дело до полного распространения шейки на весь образец. Скорость стабилизации поперечного сечения шейки зависит от ориентационного упрочнения материала. Если для приобретения ориентационного упрочнения, препятствующего сужению шейки, не требуется большой вытяжки, то четвертый участок диаграммы (отмечен буквой а на рис. 4.94, в) сокращается и может совсем отсутствовать, т. е. диаграмма растяжения получается без максимума (например, у целлулоида). Вообще картина растяжения различных полимеров зависит от их склонности к ориентационному упрочнению. Явление значительного удлинения образца на участке г диаграммы (рис. 4.94, в) носит название вынужденной эластичности, происхождение термина будет пояснено ниже. При разгрузках и повторных нaгpyнieнияx, в частности при колебаниях в процессе распространения шейки на всю длину образца, вследствие наличия последействия возникают петли гистерезиса (рис. 4.94, а, кривая, соответствующая температуре Т ). Наиболее широкие петли наблюдаются в области Tg. Вынужденно-эластическая деформация термодинамически необратима, при больших деформациях большая часть работы деформации переходит в тепло. Одиако от пластической деформации она отличается тем, что после разгрузки и нагрева до температуры Tg эта деформация исчезает. Отсюда название еластическая. Однако для возникновения обсуждаемой деформации необходимо довести напряжения до — предела вынужденной эластичности. Этим отличается вынуяаденно-эластическая деформация от высокоэластической, которая возникает при Т > Tg, т. е. в другом диапазоне температур, в процесса нагружения от нулевых напряжений. Отсюда становится понятным и слово вынужденная в названии деформации. Другим отличием вынужденно-эластической деформации от высокоэластической является то, что высокоэластическая деформация по устранении нагрузки исчезает без нагрева.  [c.343]

Методически указанная задача может решаться несколькими способами, два из которых как наиболее перспективные рассматриваются ниже. Первый из них — это метод дробных деформаций, согласно которому деформация набирается в несколько проходов путем волочения или прокатки. Метод сводится фактически к последовательному испытанию образцов из проволоки или соответственно листа после разного числа проходов. Параллельно на этих же образцах можно изучать и структуру деформированного материала. Полученные кривые нагружения отдельных образцов могут быть затем сведены на основе принципа аддитивности истинных деформаций в единую кривую в координатах 5 — е, которая перекрывает весь пройденный за несколько проходов интервал деформации. Возможности данного метода и обширность получаемой полезной информации наглядно иллюстрируют результаты работы Лэнгфорда и Коэна [299] по дробной деформации (волочением) чистого железа (0,007 % (мае.) С) при комнатной температуре. Достигнутая суммарная деформация железной проволоки составила е = 7,4, что соответствует изменению диаметра проволоки от 8 мм до 0,2 мм, или вытяжке Я = 1600.  [c.160]


Можно сформулировать несколько требований к методам интенсивной пластической деформации, которые следует учитывать при их развитии для получения наноструктур в объемных образцах и заготовках. Это, во-первых, важность получения ультра-мелкозернистых структур, имеющих преимущественно большеугловые границы зерен, поскольку именно в этом случае происходит качественное изменение свойств материалов (гл. 4,5). Во-вторых, формирование наноструктур, однородных по всему объему образца, что необходимо для обеспечения стабильности свойств полученных материалов. В-третьих, образцы не должны иметь механических повреждений или разрущений несмотря на их интенсивное деформирование. Эти требования не могут быть реализованы путем использования обычных методов обработки металлов давлением, таких как прокатка, вытяжка или экструзия. Для формирования наноструктур в объемных образцах необходимым является использование специальных механических схем деформирования, позволяющих достичь больших деформаций материалов при относительно низких температурах, а также определение оптимальных режимов обработки материалов. К настоящему времени большинство результатов получено с использованием двух методов ИПД — кручения под высоким давлением и РКУ-прессования. Имеются также работы по получению нано- и субмикрокристаллических структур в ряде металлов и сплавов путем использования всесторонней ковки [16, 17 и др.], РКУ-вытяжки [18], метода песочных часов [19].  [c.9]

Как отмечено в работе [66], зависимость процесса коррозии стали 1Х18Н10Т от степени деформации при различных способах деформирования определяется одновременным действием двух факторов выделением а-фазы пониженной стойкости с образованием электрохимической гетерогенности и повышением энергии решетки, в результате чего облегчаются анодный и катодный процессы. Эксперименты показывают, что с увеличением степени деформации скорость коррозии линейно растет при одноосном растяжении, обжатии, гидростатической вытяжке и взрывном  [c.78]

Как отмечено в работе [72], зависимость процесса коррозии стали 1Х18Н10Т от степени деформации при различных способах деформирования определяется одновременным действием двух факторов выделением фазы а пониженной стойкости с образованием электрохимической гетерогенности и повышением энергии решетки, в результате чего облегчаются анодный и катодный процессы. Эксперименты показывают, что с увеличением степени деформации скорость коррозии линейно растет при одноосном растяжении, обжатии, гидростатической вытяжке и взрывном формообразовании, тогда как содержание фазы а непрерывно увеличивается только при обжатии и вытяжке. При одноосном растяжении образовавшееся вначале небольшое количество фазы а остается неизменным на протяжении почти всего процесса деформирования и не коррелирует с ростом скорости коррозии. Таким образом, в случае одноосного растяжения в этих опытах решающую роль играло повышение энергии кристаллической решетки.  [c.80]

Результаты свидетельствуют о том, что при повторных пусках и резких изменениях режима работы турбины в рабочем колесе возникают циклы знакопеременной пластической деформации. Исходя из диаграммы, имеются основания также предполагать, что при жестких переходных ре-жимах (высокая температура газа, резкое охлаждение) возможно сочетание знакопеременной деформации с односторонней. При этом согласно расчету должно иметь место прогрес-сирующее частичное разрушение — постепенная вытяжка тонкой части диска.  [c.171]

Эффект разгрузки особенно важен для высоконагруженных скоростных подшипников тех роторов, у которых происходит рост дисбаланса во время эксплуатации (по сравнению с допустимым монтажным дисбалансом). Это относится в первую очередь к ротору газовой турбины, диск которой работает в области пластической деформации и у которой может наблюдаться заметная вытяжка лопаток. Более того, у газовой турбины возможны и дефекты обгар лопатки, обрыв частей лопатки и даже обрыв полной лопатки. Эти дефекты могут привести к возникновению неуравновешенных сил, измеряющихся сотнями килограммов и даже несколькими тоннами. Так, обрыв лопатки создает на современной газовой турбине неуравновешенную силу в 7—10 т, вектор которой вращается с огромной скоростью (более 10 ООО об/мин.). Очевидно, что такой дефект при обычной (жесткой) конструкции опор ротора должен привести к аварии и даже к катастрофе. Указанные дефекты могут возникать у газовой турбины как во время длительной эксплуатации, так и особенно в период форсировки и доводки конструкции двигателя на заводе. Таким образом, с помощью применения упругого подшипника, т. е. амортизации опоры, у газовой турбины можно существенно поднять ее надежность в процессе эксплуатации.  [c.55]

Указанное обстоятельство особенно важно для высоконагру-женных скоростных подшипников тех роторов, у которых происходит рост дисбаланса во время эксплуатации (по сравнению с допустимым монтажным дисбалансом). Это относится в первую очередь, как отмечалось выше, к ротору газовой турбины, диск которой работает в области пластической деформации и у которой может наблюдаться заметная вытяжка лопаток. Более того, у газовой турбины возможны дефекты обгар лопатки, обрыв частей лопатки и даже полный обрыв лопатки. Эти дефекты могут привести к возникновению неуравновешенных сил, измеряющихся тоннами.  [c.59]

Случай малой силы сухого трения. Для получения зависимости прогибов ротора от оборотов необходимо прежде всего вычислить прогибы ротора под диском, считая его трехопорным, по формуле (VI. 5). Аналогичные вычисления необходимо сделать и для двухопорной схемы ротора. Прогибы в этом случае определяются по формуле (VI. 5), но коэффициенты а, Ь, с, d уже вычисляются по приведенным ниже соотношениям. Далее, необходимо вычислить величины прогибов в момент вступления в работу ограничителей деформации в опоре, что может быть либо при малой величине зазора, либо при большом дисбалансе, либо при неудачном выборе величины затяжки пружин. Следует заметить, что по эксплуатационным и конструктивным соображениям параметры опоры нужно подобрать так, чтобы при нормальных и повышенных дисбалансах ограничители не действовали их работу можно допустить только при аварийных величинах дисбаланса. На фиг. 87 представлен возможный вид решений при величине эксцентриситета е = 0,002 см, который обычно бывает при эксплуатации газовой турбины. Следует заметить, что эта величина эксцентриситета приблизительно в 10 раз больше величины, устанавливаемой на балансировочном станке. Возрастание дисбаланса объясняется тем, что газовая турбина работает в условиях высокой температуры ее диск часто находится в пластическом состоянии, наблюдается вытяжка лопаток, замков и пр. Более того, возможна и некоторая расцентровка деталей ротора. При возникновении дефектов у турбины обгара кончиков лопаток, обрыва их частей и т. д., эксцентриситеты могут быть более е = 0,01 см. Так, обрыв одной лопатки вызывает эксцентриситет е = 0,1 см. Такие величины дисбалансов будем называть аварийными.  [c.180]

Инструмент для деформации металла в холодном состоянии должен иметь высокую твердость (>58 HR ). Для такого инструмента обычно используют стали со структурой низкоотпущенного мартенсита, содержащие около 1 % углерода. Штампы небольших размеров и простой конфигурации с относительно легкими условиями работы изготавливают из углеродистых инструментальных сталей (штампы диаметром до 30 мм для высадки и вытяжки, деформирующие с небольшой скоростью, чеканочные с глубокой гравюрой для обработки мягких цветных металлов и т. п.). Для аналогичных штампов, отличающихся более сложной конфигурацией и более тяжелыми условиями работы, применяют легированные инструментальные стали.  [c.93]


Прочность полимеров и других материалов обычно выше предсказываемой по уравнению (5.15). Экспериментально установлено, что для полимеров значение у лежит в области 10 —10 Дж/м против ожидаемого значения в несколько Дж/м [177—181]. Это различие обусловлено развитием пластических деформаций или холодной вытяжки полимера в процессе образования микро-трещип и роста трещин. Поверхностная энергия при этом составляет только малую долю общих затрат энергии на рост трещины. Поэтому в усовершенствованной теории, учитывающей пластические деформации при росте трещины, у рассматривается как работа пластических деформаций или как поверхностная энергия разрушения [182]. Было показано, что уравнение, аналогичное уравнению Гриффита, описывает поведение образца, содержащего много трещин [183]. Было также предложено модифицированное  [c.175]

Размер зерен при динамической рекристаллизации зависит также от нали чия избыточных фаз. В этом случае существенно, как высока температура деформации и насколько она превышает температуру границы растворимости. В присутствии избыточных фаз количество потенциально возможных мест за рождения центров динамической рекристаллизации увеличивается, а рост рекри- сталлизованных зерен сдерживается этими выделениями, которые играют роль барьеров. Эта ситуация аналогична влиянию включений на размер рекристалли-зованных зерен после холодной деформации и нагрева. Примером может служить рекристаллизация при прессовании сплава Sn—5 % Bi. Если осуществлять шроцесс деформации сплава с большой вытяжкой, можно разогреть заготовку до температуры сольвуса. При этом рост зерен в процессе рекристаллизации сдерживается выделениями частиц висмута, образующимися при распаде твердого раствора. О важности присутствия включений для активного протекания динамической рекристаллизации указано в работе [218]. Авторы проследили шлияние дисперсных сульфидных частиц на динамическую рекристаллизацию хромоникелевой стали (20 % г+25 7о Ni) с 0,06 % S. В образцах, содержащих избыточные сульфидные выделения при горячей деформации, была отмечена динамическая рекристаллизация, если же перегревом выше точки солидуса и замедленным охлаждением обеспечивалось расплавление и выделение сульфидов только на границах зерен при последующей горячей деформации, динамическая рекристаллизация не наблюдалась.  [c.111]

К первым относится неточность изготовления штампа, ко вторым — неточность работы штампа (например, смещение заготовки во время гибки), упругие деформации материала детали (например, отпружинивание детали после гибки и вытяжки) и др.  [c.569]

Когда общая деформация детали по условиям работы остается неизменной (например, вытяжка болта в резьбовом соединен ), увеличение стечением времени пластической деформации приводит к г енынению упругой де4юрмйции и падению напряжения (в даипом случае к ослаблению резьбо-, вого соединения). Это называют релак-  [c.24]

Первый патент на использование антифрикционных свойств фосфатных пленок был опубликован в 1934 г. [1]. Однако к этому времени уже были завершены и опубликованы первые отечественные исследования износоустойчивости пленок [2], показавшие, что фосфатные пленки обладают высокой способностью уменьшать работу износа трущихся поверхностей металла и легко противостоять истиранию, не снижая при этом своих защитных свойств. Вначале фос-фатиревание использовали при вытяжке труб из нелегированной и хромомолибденовой сталей [3]. Широкое использование антифрикционных свойств пленок отмечено в Германии во время второй мировой войны, когда около 600 фирм использовали этот метод в 1944 г. расход фосфатирующих препаратов при процессах холодной деформации металлов был большим, чем для антикоррозионной защиты [4]. В Англии и в США, где использование антифрикционных свойств фосфатных пленок началось после войны, около 20% всего количества фосфатирующих препаратов расходуется для обработки металлов перед их холодной деформацией [5]. В современной металлообрабатывающей промышленности без фосфатирования нельзя обойтись при волочении труб и проволоки, а также невозможно было бы осуществить процессы штамповки, холодного прессования и экструдирования стали. Считают [6], что без фосфатной обработки холодная деформация металлов не приобрела бы столь важного значения, которое она достигла в настоящее время. Сравнительные испытания различных видов антифрикционных покрытий — фосфатирования, лужения, оксидирования, сульфидирования — показали [7] преимущества фосфатной пленки, которая может заменять более дорогое электролитическое покрытие оловом и превосходит сульфидные и оксидные пленки. Установлено [8], что фосфатированная поверхность, смазанная парафином, обладает при износе наи-  [c.242]


Смотреть страницы где упоминается термин Вытяжка Работа деформации : [c.589]    [c.163]    [c.244]    [c.768]    [c.165]    [c.177]    [c.310]    [c.247]    [c.165]    [c.435]    [c.232]    [c.27]    [c.291]   
Ковка и штамповка Т.4 (1987) -- [ c.126 , c.145 ]



ПОИСК



Вытяжка

Работа деформации



© 2025 Mash-xxl.info Реклама на сайте