Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упрочнение материала ориентационное

Деформируемость ПММА со степенью вытяжки 200% сопоставима с деформируемостью неориентированного ПММА, претерпевающего при комнатной температуре хрупкое разрушение. Следовательно, степень вытяжки не является однозначным критерием ориентационного эффекта. Экстремальное изменение истинной прочности и деформативности обусловлено соотношением скоростей ориентационного упрочнения и разрушения материала. При больших степенях вытяжки процессы разрушения превалируют. О достижении оптимума свойств при определенных степенях вытяжки свидетельствуют также минимум на кривой / р—8в и максимум на кривой а р—Ед (рис. П1.14).  [c.127]


На третьем участке (в) происходит уменьшение поперечных размеров шейки. Достигнув определенных поперечных размеров, шейка перестает суживаться с этого момента начинается четвертый участок диаграммы напряжений (отмечен на рис. 4.94, в буквой г). Однако шейка захватывает все больший участок по длине образца. На образце создаются области, в которых резко отличаются поперечные размеры шейки и крайних участков. К тому моменту, когда шейка распространится на всю длину образца (конец участка г), деформации достигают сотен процентов. В процессе развития шейки материал ориентируется — молекулярные цепи расправляются и располагаются вдоль образца (вдоль направления растя-нсения). Материал приобретает свойство анизотропности—большую прочность вдоль направления растяжения. Этим (ориентационным) упрочнением и объясняется тот факт, что, пока шейка не охватила по длине весь образец, утонения (сужения) ее не происходит — шейка легче распространиться на еще не охваченные ею участки, чем сужаться. Так обстоит дело до полного распространения шейки на весь образец. Скорость стабилизации поперечного сечения шейки зависит от ориентационного упрочнения материала. Если для приобретения ориентационного упрочнения, препятствующего сужению шейки, не требуется большой вытяжки, то четвертый участок диаграммы (отмечен буквой а на рис. 4.94, в) сокращается и может совсем отсутствовать, т. е. диаграмма растяжения получается без максимума (например, у целлулоида). Вообще картина растяжения различных полимеров зависит от их склонности к ориентационному упрочнению. Явление значительного удлинения образца на участке г диаграммы (рис. 4.94, в) носит название вынужденной эластичности, происхождение термина будет пояснено ниже. При разгрузках и повторных нaгpyнieнияx, в частности при колебаниях в процессе распространения шейки на всю длину образца, вследствие наличия последействия возникают петли гистерезиса (рис. 4.94, а, кривая, соответствующая температуре Т ). Наиболее широкие петли наблюдаются в области Tg. Вынужденно-эластическая деформация термодинамически необратима, при больших деформациях большая часть работы деформации переходит в тепло. Одиако от пластической деформации она отличается тем, что после разгрузки и нагрева до температуры Tg эта деформация исчезает. Отсюда название еластическая. Однако для возникновения обсуждаемой деформации необходимо довести напряжения до — предела вынужденной эластичности. Этим отличается вынуяаденно-эластическая деформация от высокоэластической, которая возникает при Т > Tg, т. е. в другом диапазоне температур, в процесса нагружения от нулевых напряжений. Отсюда становится понятным и слово вынужденная в названии деформации. Другим отличием вынужденно-эластической деформации от высокоэластической является то, что высокоэластическая деформация по устранении нагрузки исчезает без нагрева.  [c.343]


Величина максимального растягивающего напряжения является, по-видимому, основным параметром состояния, определяющим предельные условия и скорость разрушения материала. Для описания разрушения существенно, что по мере роста несплошностей пороговые напряжения, необходимые для дальнейшего развития процесса, снижаются. Поэтому степень разрушения в том или ином ее выражении должна бьггь вторым определяющим параметром. Роль пластической деформации не вполне ясна и, если она велика, по-видимому, в первом приближении может выражаться в деформационном упрочнении материала. В результате деформационного упрочнения возрастает возможная анизотропия напряженного состояния тела в целом и материала в окрестности концентраторов напряжений, являющихся потенциальными очагами разрушения, и тем самым достигается пороговое напряжение разрушения. Роль температуры несомненно важна с точки зрения возможности структурных превращений и плавления, но в пределах одного фазового состояния ее вклад при высокоскоростной деформации, по-видимому, много меньше, чем в обычных условиях. Поскольку в экспериментах наблюдалось влияние ориентации нагрузки относительно текстуры материала на сопротивление откольному разрушению, ориентационный фактор, вообще говоря, также должен быть включен в рассмотрение, то есть достаточно полное описание разрушения должно иметь тензорный характер [92].  [c.223]

Ориентационное упрочнение — процессы медленного растян ения (например, прокаткой) полимеров, находящихся в высокоэластжчном или вязкотекучем состоянии при повышенной температуре, при котором макромолекулы растягиваются в силовом поле в упорядоченном виде, приобретая ориентированную структуру, которая сохраняется при снижении температуры до комнатной. Свойства полимерного материа.ла, преимущественно пленок и листов, получаются анизотропными, так же как у металлического проката (см. с. 18).  [c.232]

При высоких рабочих температурах ЭГК ТЭП вследствие термически активируемых и диффузионных процессов устраняется структурная метастабильность деформированных монокристаллов и осуществляется переход их к стабильному состоянию. Устранение следов пластической деформации при отжиге, (разупрочнение) происходит вследствие процессов возврата, полигонизации и рекристаллизации [31]. Однако ориентационная зависимость деформационного упрочнения, условия пластической обработки, а также примеси, энергия дефектов упаковки и т. д. существенно влияют на характер процессов разупрочнения, на взаимосвязь полигонизации и рекристаллизации [10, 24, 37, 38, 41, 42, 48, 70, 71, 74—76, 101, 121, 126, 135, 1361. При этом устранение упрочненного состояния монокристаллов вследствие рекристаллизации (т. е. образования высокоугловых границ)—крайне нежелательное явление, так как означает превращение монокристалла -в поликристаллический материал с присущими ему недостатками (см. предыдущий раздел) уменьшение работы выхода электронов, появление эффектов пропотевания жидкого металла через границы зерен и т. д. [10, 71, 126].  [c.96]

В настоящее время громадный интерес представляет количественное прогнозирование механического поведения,. или уравнение состояния в условиях циклического нагружения. Это огромная самостоятельная область, и здесь о ней следует хотя бы упомянуть. Уравнения (модели) состояния позволяют прогнозировать связь между напряжением и скоростью деформации на основе данных об интенсивности деформационного упрочнения, конкурентных ему процессах возврата и об их влиянии на состояние материала, формирующееся при циклическом нагружении. Эти процессы воспроизводят зависимость свойств материала от температуры, а само состояние материала отражает его собственную деформационную предысторию. Пытаются также учитывать дополнительные сложности, например, многоосные напряженные состояния, анизотропию свойств (как у монокристаллов) и другие ориентационные особенности, присущие суперсплавам, — активизацию октаэдрического и кубического скольжения, механическую анизотропию при знакопеременном (растя-жение-сжатие) нагружении. В значительной мере разработку этих моделей вели для решения проблем ядерной промышленности [21]. Развитие моделей, нацеленных на нужды изготовителей газотурбинных двигателей, было поддержано NASA [22, 23].  [c.346]



Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.343 , c.344 ]



ПОИСК



Ориентационное упрочнение

Упрочнение

Упрочнение материала



© 2025 Mash-xxl.info Реклама на сайте