Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эластичность вынужденная

При действии больших напряжений в стеклообразных полимерах развиваются большие деформации, которые по своей природе близки к высокоэластическим. Эти деформации были названы А. П. Александровым вынужденно-эластическими, а само явление— вынужденной эластичностью. Вынужденно-эластические деформации могут проявляться Б интервале температур Тхр — Тс, а при нагревании выше Тс они обратимы, т. е. образец полностью восстанавливается до первоначального размера. Диаграмма растяжения стеклообразного полимера показана на рис. 209. Область / является областью обратимой упругой деформации, а в области // происходит процесс высокоэластической деформации.  [c.397]


Возможность вынужденной эластичности А. П. Александров объясняет тем, что с увеличением приложенного напряжения происходит снижение энергии активации конформационных превраш,е-н ий молекул. В первом приближении принимается, что уменьшение Ua С ростом а происходит линейно  [c.47]

Рис, 1.34. кривая растяжения аморфного полимера в стеклообразном состоянии (вынужденная эластичность)  [c.47]

Для эксплуатации полимеров наибольшее значение имеют область вынужденной эластичности, в которой полимер, обладая высокой прочностью, е является хрупким, и область высокоэластической деформации, позволяющей использовать полимеры как эластомеры (резины). Область, лежащая выше температуры пластичности используется для переработки полимеров в изделия.  [c.57]

Следует заметить, что спад напряжений на диаграмме а — е (рис. 4.94, в) не может быть объяснен образованием шейки. Во-первых, такой спад наблюдается и на кривой истинных напряжений (пунктир на рис. 4.94, в). Во-вторых, характер кривой а — 8 сохраняется и при сжатии, когда шейка, естественно, не образуется. Механизм вынужденной эластичности до настоящего времени не выяснен окончательно. Среди существующих версий отметим одну, согласно которой вынужденная эластичность связана с разрушением некоторой (возможно, надмолекулярной) структуры. В пользу такой гипотезы говорят опыты по повторному нагружению образцов. А именно, если при первом нагружении на кривой а — а  [c.343]

Некоторые дополнительные сведения о деформации полимеров в стеклообразном состоянии при напряжениях, способных вызвать вынужденную эластичность. Обсудим детальнее деформацию образца в каждой из температурных областей.  [c.345]

Понижение предела вынужденной эластичности при повышении температуры было качественно уже проиллюстрировано на рис. 4.94, в. На рис. 4.97 показана количественная зависимость от Т, а также и от. v.  [c.345]

Вынужденные колебания машины, вызываемые неуравновешенностью роторов, определяются, таким образом, амплитудами прогибов и динамических опорных усилий, которые возникают от той же неуравновешенности в роторах на абсолютно жестких опорах, и с другой стороны, динамическими жесткостями системы корпус—роторы в узловых точках (на шейках роторов). Поэтому при сравнительной оценке эффективности различных способов балансировки ротора достаточно ограничиться рассмотрением его движения на жестких опорах. Отсюда, в частности, вытекает, что снижение уровней вибраций корпуса машины, которое нередко достигается уменьшением жесткости опор роторов путем установки под подшипники эластичных втулок, связано с перестройкой инерционно-жесткостных характеристик системы в рабочем диапазоне оборотов, а не с повышением эффективности балансировки за счет самоцентрирования ротора, как это иногда объясняют. Повышение жесткости ротора приводит не только к изменению инерционно-жесткостных характеристик системы, но может повысить эффективность балансировки ротора.  [c.223]


А — область упругих деформаций С — область высокоэластической деформации а,ин м — предел вынужденной эластичности  [c.222]

Предел вынужденной эластичности не является константой полимерных матер алов — величина его зависит от температуры и скорости деформирования. Зависимость предела вынужденной эластичности авэ от скорости растяжения V выражается эмпирическим уравнением  [c.100]

Рис. 4.23. Зависимость напряжения а от Деформации е при растяжении полимерных пленок Овэ предел вынужденной эластичности предел пропорциональности -текущее значение а. Рис. 4.23. <a href="/info/328158">Зависимость напряжения</a> а от Деформации е при растяжении <a href="/info/50889">полимерных пленок</a> Овэ <a href="/info/164462">предел вынужденной эластичности предел</a> пропорциональности -текущее значение а.
Для аморфных стеклообразных полимеров вид деформационных кривых сохраняется как при растяжении в активных жидкостях, так и при хрупком разрушении на воздухе. Разрушение этих полимеров в жидкости происходит при меньших напряжениях, чем на воздухе, и сопровождается интенсивным растрескиванием поверхности. Кристаллические эластомеры, характеризующиеся большими деформациями растяжения, более чувствительны к действию жидких сред различной химической природы. Изменение их деформационного поведения в жидкостях может выражаться в уменьшении начального модуля при растяжении (только в растворителях), в снижении предела вынужденной эластичности и напряжения развития шейки, в увеличении или уменьшении предельной деформации при разрыве.  [c.163]

Согласно этому правилу [81] поверхностная активность водных растворов органических веществ тем выше, чем длиннее углеводородный радикал. При увеличении радикала на одну группу —СНа— поверхностная активность вещества в растворе возрастает в 3—3,5 раза. Аналогичным образом изменяется и предел вынужденной эластичности полистирола в водных растворах спиртов малых концентраций. Предел вынужденной эластичности полистирола одинаков в растворах различных спиртов, если концентрация каждого последующего гомолога в растворе в 3 раза меньше, чем предыдущего, от факт был воспринят как решающее доказательство адсорбционной природы эффекта облегчения деформации и справедливости использования межфазной поверхностной энергии в качестве критерия активности жидкой среды. Однако экспериментальное доказательство этому было получено лишь для жидкостей, не растекающихся по поверхности образца. Для жидких сред, растекающихся по поверхности образца, как будет показано ниже, уменьшение межфазной поверхностной энергии приводит к увеличению сопротивления деформации.  [c.165]

Любопытно отметить наличие коэффициента /2 в соотношении (7.39), которое связывает полное вынужденное сдвиговое восстановление с компонентами напряжения в установившемся сдвиговом течении, предшествовавшем восстановлению. Коэффициент V2 отсутствует в уравнении (4.26), до некоторой степени аналогичном (7.39) и связываюш,ем величину деформации сдвига в эластичном твердом теле с тем же отношением компонент напряжения. Уравнение, подобное  [c.200]

Для полимеров вместо предела текучести следует использовать предел вынужденной эластичности.  [c.10]

Съем детали с литьевой формы может быть облегчен тем, что ПМ остается несколько нагретым, но при этом нужно не вызвать вынужденной текучести или вынужденной эластичности. При проектировании литьевой формы для деталей, имеющих форму тел вращения и выступающий буртик, плоскость разъема в ней размещают непосредственно у этого буртика. Благодаря этому литая деталь беспрепятственно удаляется из оснастки. В формующую оснастку для деталей с большим поднутрением иногда необходимо вводить подвижные элементы.  [c.94]

При действии больших напряжений в стеклообразных полимерах развиваются значительные деформации, которые по своей природе близки к высокоэластическим. Эти деформации были названы А. П. Александровым вынужденно-эластическими, а само явление — вынужденной эластичностью. Вынужденно-эластические деформации проявляются в интервале температур а при нагреве выше о они обратимы (рис. 202, а). Максимум па кривой соответствует условию йа1(1г = 0 и называется пределом вынужденной эластичности. У полимеров с плотной сетчатой структурой под действием нагрузки возникает упругая и высокоэластическая деформация, пластическая деформация обычно отсутствует (фенолоформальдегидная смола в стадии резит). По сравнению с линейными полимерами упругие деформации составляют относительно большую часть, высокоэластнческих деформаций гораздо меньше. Природа высокоэластической деформации, как и в линейных полимерах, состоит в обратимом изменении конформации полимерной молекулы, но максимальная деформация при растяжении обычно не превышает 5—15 %.  [c.441]


Детали тяжелонагруженных узлов трения изготовляют из композиционных материалов на основе ароматического полиамида типа фени-лона. При этом для эксплуатации в условиях малых скоростей и больших давлений предпочтительны полиамиды с высокой молекулярной массой, в условиях повышенных скоростей и малых контактных давлений - полиамиды с малой молекулярной массой. Одной из причин невысокого коэффициента трения фенилона является наличие широкого температурного интервала вынужденной эластичности, обусловленной достаточно большой рыхлостью структуры полимера. Минимальное значение/наблюдается при температуре 50-70°С независимо от ско-  [c.30]

С этой точки зрения следовало бы ожидать, что при температурах на 20—30° ниже точки стеклования полимеры будут жесткими твердыми телами, подчиняющимися закону Гука. Это действительно так. Однако оказалось, что под действием достаточно высоких напряжений большинство полимеров при этих температурах проявляют весьма большую (сотни процентов) деформацию, которая может сохраняться в них как угодно долго после снятия нагрузки, но практически полностью исчезает при нагревании выше температуры стеклования. Это дает основание считать ее такой же обратимой деформацией, как и высокоэластическую. Она была названа А. П. Александровым вынужденноэластической, а само явление возникновения больших деформаций в стеклообразных полимерах п зыъаю1 вынужденной эластичностью.  [c.46]

На рис. 1.34 показана кривая зависимости а (е) для стеклообразных полимеров. На ней можно выделить три области А, В, С. Область А соответствует упругой деформации и описывается законом Гука. Величина деформации на этом участке относительно невелика и измеряется единицами процентов. После снятия напряжения деформация исчезает практически мгновенно. При дальнейшем увеличении напряжения скорость роста деформации увеличивается и при достижении предела вынужденной эластичности Овэ в образце начинает развиваться вынужденноэластическая деформа-  [c.46]

На рис. 1.43 показана схематическая кривая прочностных состояний аморфного полимера. По оси абсцисс отложена температура ..no оси ординат — истинное напряжение в образце, равное отношению растягивающего усилия к фактическому сечению образца, соответствующему данной степени его растяжения. До температуры хрупкого разрушения полимер обладает хрупкой прочностью Охр, слегка понижающейся с ростом температуры в этом интервале температур предел вынужденной эластичности agg, показанный штриховой линией, выше хрупкой прочности Ojp. Выше Г р в полимере возникает вынужденная эластическая деформация, вызывающая преимущественную ориентацию молекул вдоль оси растяжения и связанное с этим упрочнение полимера. Поэтому в этом диапазоне температур прочность полимера растет, а предел вынужденной эластичности падает и при температуре стеклования обращается в нуль — полимер переходит в высокоэласти-  [c.56]

Рис. 4.93. Диаграмма деформационно-прочностных состояниЛ аморфных полимеров Т),р — граница между температурными областями хрупкости и разрушения в ориентированном состоянии, Tg — температура стеклования. — граница между температурными областями высокоП эластичности и пластичности — хрупкая прочность Од, — предел вынужденной эластичности, — прочность высокоэлаетнческого материала Рис. 4.93. <a href="/info/45975">Диаграмма деформационно-прочностных состояниЛ</a> <a href="/info/113050">аморфных полимеров</a> Т),р — граница между температурными областями хрупкости и разрушения в ориентированном состоянии, Tg — <a href="/info/116822">температура стеклования</a>. — граница между температурными областями высокоП эластичности и пластичности — <a href="/info/165995">хрупкая прочность</a> Од, — <a href="/info/46447">предел вынужденной эластичности</a>, — прочность высокоэлаетнческого материала
Во второй подобласти (Г р < Т < Tg) стеклообразной области диаграмма приобретает вид, показанный на рис. 4.94, в, где изображены три кривые (сплошные линии) при разных температурах чем выше температура, тем ниже располагается кривая —тем легче деформируется материал. Напряжение Og , соответствующее максимуму на кривой, называется пределом вынужденной эластичности. Чем выше Т (остается ниже, чем Tg), тем меньше (см. рис. 4.93, где кривая Ствэ изображена пунктиром). Напряжения, соответствующие всем трем  [c.342]

На третьем участке (в) происходит уменьшение поперечных размеров шейки. Достигнув определенных поперечных размеров, шейка перестает суживаться с этого момента начинается четвертый участок диаграммы напряжений (отмечен на рис. 4.94, в буквой г). Однако шейка захватывает все больший участок по длине образца. На образце создаются области, в которых резко отличаются поперечные размеры шейки и крайних участков. К тому моменту, когда шейка распространится на всю длину образца (конец участка г), деформации достигают сотен процентов. В процессе развития шейки материал ориентируется — молекулярные цепи расправляются и располагаются вдоль образца (вдоль направления растя-нсения). Материал приобретает свойство анизотропности—большую прочность вдоль направления растяжения. Этим (ориентационным) упрочнением и объясняется тот факт, что, пока шейка не охватила по длине весь образец, утонения (сужения) ее не происходит — шейка легче распространиться на еще не охваченные ею участки, чем сужаться. Так обстоит дело до полного распространения шейки на весь образец. Скорость стабилизации поперечного сечения шейки зависит от ориентационного упрочнения материала. Если для приобретения ориентационного упрочнения, препятствующего сужению шейки, не требуется большой вытяжки, то четвертый участок диаграммы (отмечен буквой а на рис. 4.94, в) сокращается и может совсем отсутствовать, т. е. диаграмма растяжения получается без максимума (например, у целлулоида). Вообще картина растяжения различных полимеров зависит от их склонности к ориентационному упрочнению. Явление значительного удлинения образца на участке г диаграммы (рис. 4.94, в) носит название вынужденной эластичности, происхождение термина будет пояснено ниже. При разгрузках и повторных нaгpyнieнияx, в частности при колебаниях в процессе распространения шейки на всю длину образца, вследствие наличия последействия возникают петли гистерезиса (рис. 4.94, а, кривая, соответствующая температуре Т ). Наиболее широкие петли наблюдаются в области Tg. Вынужденно-эластическая деформация термодинамически необратима, при больших деформациях большая часть работы деформации переходит в тепло. Одиако от пластической деформации она отличается тем, что после разгрузки и нагрева до температуры Tg эта деформация исчезает. Отсюда название еластическая. Однако для возникновения обсуждаемой деформации необходимо довести напряжения до — предела вынужденной эластичности. Этим отличается вынуяаденно-эластическая деформация от высокоэластической, которая возникает при Т > Tg, т. е. в другом диапазоне температур, в процесса нагружения от нулевых напряжений. Отсюда становится понятным и слово вынужденная в названии деформации. Другим отличием вынужденно-эластической деформации от высокоэластической является то, что высокоэластическая деформация по устранении нагрузки исчезает без нагрева.  [c.343]


Рис. 4.101. Зависимость вида диаграммы деформационно-прочностных состояний от вида деформациив 1 — растяжение, 2 — сжатие пунктир — линии предела вынужденной эластичности. Рис. 4.101. Зависимость вида <a href="/info/45975">диаграммы деформационно-прочностных состояний</a> от <a href="/info/123312">вида деформациив</a> 1 — растяжение, 2 — сжатие пунктир — линии предела вынужденной эластичности.
Деформация полимеров в стеклообразном состоянии при напряжениях меньшетех, которые вызывают вынужденную эластичность. Выше обсуждалась деформация аморфных полимеров в стеклообразном состоянии при больших напряжениях, способных вызвать вынужденную эластичность. Рассмотрим теперь бегло  [c.347]

Температурная зависимость Ова = Т) для многих полимеров имеет сложный характер. С понижением температуры предел вынужденной эластичности резко возрастает, приближаясь к пределу хрупкости. Температура, при которой вынувденная эластичность вырождается, называется температурой хрупкости, или точкой хрупкости Тхр-  [c.101]

Детали из полимерных материалов со стеклообразной структурой надежно работают в силовых конструкциях в диапазоне температур от до Важно, чтобы полимер имел температуру tjjp пониженную, а температуру — повышенную. При действии больших напряжений в стеклообразных полимерах развиваются значительные деформации, получившие название вынужденно-эластические (рис. 12.6, а). Явление вынужденной эластичности отмечается в интервале температур Максимум кривой соответствует пределу вынужденной эластичности. При нагреве полимера выше температуры вынужденно-эластические деформации обратимы. Вынужденноэластическая деформация возникает и развивается в результате распрямления и вытягивания  [c.266]

Критерий минимальной межфазной поверхностной энергии был применен в работе [80] для объяснения снижения сопротивления деформированию полистирольной пленки в водных растворах низших представителей гомологического ряда предельных спиртов. Было обнаружено, что изменение предела вынужденной эластичности полистирола при переходе от раствора одного гомолога к раствору другого происходит в соответствии с адсорбционным правилом Дюкло—Траубе.  [c.165]

Для твердых П. характерно, что при напряжениях выше т. п. предела вынужденной эластичности развивается высокоэластич. деформация к П. из изотропного переходит в твердое анизотропное состояние (деформация высокоэластич. вынужденная). При напряжениях ниже предела Од стеклообразный П. испытывает в основном упругую деформацию. Только под вынуждающим действием внешних сил при напряжениях выше развивается высокоэластич. деформация.  [c.18]

Рис. 2. Диаграмма деформационно-прочностных состояний аморфных полимеров — граница перехода от температурной области хрупкости к температурной области разрушения в ориентированном состоянии Tq—температура стеклования — граница перехода от температурной области высокой эластичности к области пластичности Tf—температура текучести о р—хрупкая прочность — предел вынужденной эластичности о —прочность Бысокоэластического материала (ггапря-жение рассчитано на поперечное сечение образца при разрыве) а — предел текучести. Рис. 2. <a href="/info/45975">Диаграмма деформационно-прочностных состояний</a> <a href="/info/113050">аморфных полимеров</a> — граница перехода от температурной области хрупкости к температурной области разрушения в ориентированном состоянии Tq—<a href="/info/116822">температура стеклования</a> — граница перехода от температурной области высокой эластичности к <a href="/info/132352">области пластичности</a> Tf—<a href="/info/165468">температура текучести</a> о р—<a href="/info/165995">хрупкая прочность</a> — <a href="/info/46447">предел вынужденной эластичности</a> о —прочность Бысокоэластического материала (ггапря-жение рассчитано на <a href="/info/7024">поперечное сечение</a> образца при разрыве) а — предел текучести.
ПРЕДЕЛ ВЫНУЖДЕННОМ ЭЛАСТИЧНОСТИ — величина напряжения в момент образования шейки в наиболее слабом месте при растяжении полимера (рис.). П. в. э. обозначается Oi,. В кри-сталлнч. полимерах (см. Прочность полимеров) возникновение  [c.44]

ХРУПКОСТИ ТЕМПЕРАТУРА -темп-ра, ниже к-рой материал испытывает хрупкое разрушение, но обнаруживая к.-л. заметных остаточных деформаций. Выше ее хладноломкие металлы испытывают пластическун), а пластмассы вынуж-дешюэластич. деформацию. Это объясняется тем, что предел текучести (металлы) или предел вынужденной эластичности (полимеры) с повышением темп-ры уменьшаются и выше X. т. становятся меньше предела прочности. X. т. условна, т. к. зависит от условий испытаний режима деформации, вида напряженного состояния, размеров тела и др. факторов. Поэтому сравнение различных материалов производится при одинаковых условиях испытания. X. т. зависит не только от природы материала, но от его структуры, особенно для металлич. сплавов и твердых полиме-  [c.424]

При низких температурах в стеклообразном состоянии полимеры представляют собой идеально упругие материалы [2]. При более высоких температурах- проявляются эластические деформации [3], обычно представляющие собой деформации упругого последствия. В области высокой эластичности можно выделить подобласть, в которой 1) высокоэластические деформации развиваются лишь при напряжениях, превышающих некоторый предел, зависимый от скорости деформации 2) после снятия напряжений высокоэластические деформации исчезают со скоростью, на много порядков меньшей, чем при их развитии. Иногда спад высокоэластической деформации этого рода не обнаруживается в экспериментах при температуре опыта и происходит лишь при нагревании материалов [4]. Такие деформации Ю. С. Лазуркиным были названы выаужденно-эластическими [5J. В работе [5] также было предложено довольно удачное физическое объяснение процесса вынужденной эластичности на основе зависимости времени упругого последствия х от напряжений 0 и абс. температуры Т. Эта зависимость имеет вид  [c.134]


Смотреть страницы где упоминается термин Эластичность вынужденная : [c.47]    [c.345]    [c.347]    [c.827]    [c.441]    [c.223]    [c.100]    [c.237]    [c.149]    [c.515]    [c.516]    [c.517]    [c.135]    [c.135]    [c.65]    [c.66]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.343 , c.345 , c.347 ]

Расчёты и конструирование резиновых изделий Издание 2 (1977) -- [ c.32 ]



ПОИСК



433 (фиг. 9.2). 464 (фиг эластичные

АЛФАВИТНО предел вынужденной эластичност

Полимеры предел вынужденной эластичности

Предел выносливости вынужденной эластичности

Предел вынужденной эластичности

Эластичность



© 2025 Mash-xxl.info Реклама на сайте