Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диффузия турбулентная вещества

Заменяя в уравнении (19) удельное теплосодержание (энтальпию) СрТ на концентрацию примеси некоторого вещества с, получим уравнение турбулентной диффузии этого вещества  [c.548]

ПОТОК турбулентной диффузии для вещества сорта а.  [c.122]

Гидродинамические особенности турбулентного потока в канале были рассмотрены в гл. 3. Здесь же следует отметить влияние гидродинамических условий на перенос вещества. В пограничном слое толщиной 5,. (рис. 15-2) происходит резкое, близкое к линейному изменение концентраций поскольку в этой области потока скорость процесса определяется молекулярной диффузией, роль конвективной диффузии мала. Это объясняется тем, что на границе раздела фаз усиливается тормозящее действие сил трения между фазами и сил поверхностного натяжения на границе жидкой фазы. Образование гидродинамического пограничного слоя вблизи поверхности раздела фаз ведет к возникновению в нем диффузионного пограничного слоя толщиной 5д, обычно не совпадающей с 5,.. В ядре потока массоперенос осуществляется в основном турбулентными пульсациями, поэтому концентрация распределяемого вещества в ядре потока практически постоянна. Как отмечалось выше, перенос вещества движущимися частицами, участвующими в турбулентных пульсациях, называют турбулентной диффузией. Перенос вещества турбулентной диффузией описывается уравнением, аналогичным уравнению (15.14а)  [c.16]


В случае турбулентного режима движения на границе фаз перенос вещества осуществляется не только вследствие молекулярной диффузии, но и вследствие интенсивного перемешивания отдельных фаз. Такую диффузию называют конвективной, или молярной.  [c.500]

Формально такое явление наблюдается при рассмотрении турбулентного течения. Однако существенное отличие состоит в том, что пульсационная составляющая распределения скорости определяется периодической структурой поверхности раздела волновой пленки жидкости, определяемой из решения уравнения Навье-Стокса, а следовательно, не носит характер случайной величины, как это имеет место при турбулентном течении. Такой характер распределения скорости, представленный формулой (1.3.12), вносит существенные коррективы в природу уравнения конвективной диффузии для волновой пленки. На самом деле, если два первых члена уравнения (1.3.8) по форме напоминают уравнение переноса вещества в гладкой жидкой пленке (при а => 0), то его третий член ответствен за волновую природу массообмена. Этот член но форме напоминает добавку к потоку вещества, обусловленную турбулентным переносом. Но как и для случая распределения скорости (1.3.12), эта добавка носит периодический, а не случайный как это имеет место при турбулентном потоке вещества.  [c.22]

Плотность массового потока вещества может быть выражена через градиент осредненной во времени концентрации, но в этом случае в законе Фика коэффициент молекулярной диффузии D надо заменить на D + D , где D — коэффициент турбулентного переноса вещества. В этом случае дифференциальное уравнение массообмена для турбулентного потока приводится к виду  [c.262]

Во-вторых, частицы вещества, растворенного в движущейся жидкости или газе, увлекаются и переносятся макрочастицами, размеры которых значительно больше размеров молекул. Такая диффузия называется конвективной диффузией вещества. Процесс диффузии в турбулентных потоках и частично в ламинарных полностью подчиняется механизму конвективной диффузии вещества.  [c.81]

Прогнозирование качества воды. Сброс загрязненных и сточных вод в водотоки и водоемы требует обеспечить прогнозирование качества воды во времени и в пространстве. Эти расчеты выполняются на основе уравнений движения, неразрывности (сохранения массы), сохранения импульса, но с добавлением уравнений диффузии (в большинстве случаев — турбулентной диффузии) и других специфических уравнений и соотношений, в том числе уравнений сохранения веществ примеси. Их. совместное рассмотрение позволяет прогнозировать как принимаемые решения, так и концентрации взвешенных частиц, поступающих в водоток или водохранилище со сточными водами, и ее изменения в водном пространстве, а также говорить о таких специфических, но очень важных вопросах, как изменение биомассы фитопланктона, содержания растворенного в воде кислорода, температуры воды, концентрации углерода, азота и некоторых других элементов в воде. При расчетах может также учитываться так называемое вторичное загрязнение воды от грязных донных отложений, например, в водохранилище.  [c.306]


Перенос вещества из продуктов сгорания на поверхность экранных труб происходит по инерции, за счет диффузии либо под воздействием электростатических сил. В первом случае частицы золы, имеющие большую инерцию, выходят из потока при его искривлении или из-за пульсации и крупномасштабной турбулентности среды внутри топочной камеры и ударяются о поверхность труб. Во втором случае частицы золы и пары минеральных компонентов передвигаются турбулентно к поверхности в результате броуновского движения либо термодиффузии через пограничный слой.  [c.38]

Безразмерная концентрация определяется условиями переноса вещества в потоке газа. Уравнение диффузии в случае изотропной турбулентности можно написать в виде  [c.114]

В расчетах по предлагаемой схеме считается, что тепло передается только молекулярной теплопроводностью, а материальный перенос осуществляется только молекулярной диффузией. В общем случае тепло- и массообмен между поверхностью шара и окружающей средой—явление более сложное из-за конвективного переноса и наличия турбулентного граничного слоя. Используя в расчете молекулярные коэффициенты переноса тепла и вещества в общем случае, мы должны ввести представление об условной толщине пограничного слоя, т. е.  [c.59]

Несмотря на отсутствие точных уравнений турбулентного переноса и связанный с этим эмпирический характер теории, последняя к настоящему времени достигла значительного уровня развития. Однако изучение струйных задач в области турбулентного теплообмена (в равной мере—турбулентной диффузии) заметно отстает от исследований динамической задачи. Целесообразно поэтому попытаться рассмотреть последовательно некоторые тепловые задачи как для несжимаемой жидкости, так и для газа переменной в поле течения плотности, обратив при этом основное внимание на соотношение между коэффициентами турбулентного переноса количества движения и тепла (или вещества).  [c.81]

Следовательно, наиболее существенная роль в процессах горения газообразных топлив должна принадлежать процессам смешения газообразных топлив с окислителем. Скорость смесеобразования определяется количеством веществ, характером движения, степенью турбулентности, а также молярной и молекулярной диффузией реагирующих потоков и, наконец, формой и размерами устройств, в которых протекает смесеобразование.  [c.53]

Диффузией называется самопроизвольный перенос вещества из области с большей его концентрацией в область с меньшей концентрацией. Аналогично теплообмену перенос вещества (массообмен) может осуществляться как за счет молекулярной проводимости, так и за счет молярных, конвективных переносов. Одной из форм молярного переноса вещества является турбулентная диффузия в газах и жидкостях.  [c.417]

Наиб, очевидной и подчас технически наиб, важной особенностью турбулентного течения жидкости является существенно больший ло сравнению с ламинарным перенос вещества, импульса и энергии. В др. средах Т., как правило, также приводит к интенсификации переноса явлений, хотя физ. механизмы аномально высоких коэффициентов переноса в разных средах, естественно, различны. В частности, именно обнаружение в кон. 40-х гг. аномальной диффузии плазмы поперёк магн. поля, связанной с пульсациями электрич. поля, послужило началом проникновения понятия Т. в физику плазмы.  [c.180]

Турбулентность на свободных поверхностях усиливается при следующих условиях 1) вещество диффундирует из фазы с более высокой вязкостью 2) вещество диффундирует в фазу с меньшим поверхностным натяжением 3) при наличии большой разности кинематических вязкостей жидкостей, составляющих фазы, и коэффициентов молекулярной диффузии 4) при наличии высокого градиента концентраций у поверхности 5) поверхностное натяжение сильно изменяется с концентрацией  [c.154]

Таким образом, полученные опытные данные позволяют предположить, что в диапазоне давлений от 40 до 0,1 мм рт. ст. процесс переноса тепла и вещества в пределах пограничного слоя происходит вследствие молекулярной и турбулентной диффузии, где последняя во > много раз превосходит чисто молекулярную диффузию.  [c.220]


По рейнольдсовой схеме вещество транспортируется вследствие разности G- и 5-концентраций потоков смеси. В реальном течении некоторая часть этого вещества переносится за счет процесса диффузии. По рейнольдсовой схеме причиной переноса энергии является разность G- и 5-энтальпий движущейся смеси. В соответствующем реальном течении этот перенос частично осуществляется теплопроводностью. Аналогично вклад в перенос энергии, обусловленный в рейнольдсовой модели разностью кинетической энергии течения в G- и 5-состояниях, должен отличаться от того, который имеет место в реальном течении. Он характеризуется работой сил трения и связан с градиентом скорости и вязкостью (ламинарной и турбулентной) движущегося вещества.  [c.225]

Турбулентная диффузия массы во внутреннем следе. Зная изменение коэффициента турбулентной диффузии Ej- ( ) вдоль оси следа, можно описать турбулентную диффузию отдельных химических компонентов во внутреннем следе с помош,ью подхода, аналогичного рассмотренному выше для суммарной статической энтальпии. Рассмотрим простейший случай, когда все диффундирующие компоненты содержатся во внутреннем следе рекомбинация или другие химические реакции, в которых участвуют эти компоненты, настолько медленнее диффузии, что ими можно пренебречь. Это случай введения инородного вещества в пограничный слой путем абляции. Как и энтальпия [уравнение (63)], массовая концентрация может быть задана в простейшем случае в двупараметрическом виде  [c.181]

Перенос турбулентных масс в пространстве порождает значительную неоднородность концентрации г-го вещества среды и неизбежно сопровождается нестационарной внутренней молекулярной диффузией в отдельных турбулентных молях. Поэтому в описании процесса турбулентной диффузии приходится пользоваться осредненной парциальной плотностью р г.  [c.53]

Запишем теперь, пользуясь формулами (3.3.20), (33.3 ) и (3.3.15 ), реологические соотношения для тензора рейнольдсовых напряжений и турбулентных потоков диффузии и тепла, описывающие перенос количества движения, вещества и тепловой энергии в вертикальном направлении при турбулентном перемешивании многокомпонентной смеси  [c.158]

Уравнения переноса для турбулентных потоков диффузии. Предположим, что в общем уравнении переноса (4.1.9) А =2 и B = VJ. Тогда, используя для мгновенных значений потоков и источников вещества сорта а и количества движения смеси соотношения (2.1.10) и (4.2.1), соответственно, получим точные эволюционные уравнения переноса для турбулентных потоков диф-  [c.193]

На Рис. 6.2.3 представлены характерные времена различных физико-химических процессов, определяющих высотное распределение основных компонентов термосферы для варианта 1 на Рис. 6.2.1 и Рис. 6.2.2. Кривая 1 показывает время химической релаксации атомарного кислорода и характеризуется резким уменьшением характерного времени с высотой, так что на высотах меньше 80 км можно считать, что для атомарного кислорода выполняется условие фотохимического равновесия. В то же время, на высотах 80-100 км определяющими процессами являются турбулентная диффузия и рекомбинация атомов О. На высотах, больших 100 км, в процессы переноса вещества уже начинает вносить существенный вклад молекулярная диффузия.  [c.257]

Методы экспериментального исследования перемешивания теплоносителя в поперечном сечении пучка витых труб на стационарном режиме были рассмотрены в работе [39]. Это — классические методы исследования переносных свойств потока методы диффузии тепла (вещества) от точечного источника, непрерьшно испускающего нагретые частицы воздуха (или газа другого рода) в основной поток, и метод диффузии тепла от линейного источника, трансформированные с учетом особенностей течения в пучке витых труб, а также его конструкции. При этом для проведения экспериментов и обработки опытных данных использовалась гомогенизированная модель течения. Измерения полей температуры и скорости потока проводились вне пристенного слоя, а теоретически рассчитанные поля температуры теплоносителя и скорости потока бьши непрерьшны в пределах диаметра кожуха пучка. При этом считалось, что в пучке течет двухфазная гомогенизированная среда с неподвижной твердой фазой. При исследовании эффективного коэффициента турбулентной диффузии в прямом пучке витых труб первым методом диаметр источника диффузии бьш равен диаметру витой трубы с , а сам источник перемещался относительно выходного сечения пучка, гделроизво-дились измерения полей скорости. Однако эти отклонения от известного метода диффузии не стали препятствием для использования понятия точечного источника в пучке витых труб при достаточно больших расстояниях от него, где измеренные поля температур практически не отличались от гауссовского распределения [39]. Этот метод, основанный на статистическом лагранжевом описании турбулентного поля при изучении истории движения индивидуальных частиц, непрерьшно испускаемых источником, используется в данной работе и для определения эффективных коэффициентов турбулентной диффузии в закрз енном пучке витых труб, но при неподвижных источниках диффузии.  [c.52]

В теории Тейлора переноса завихренности, формально от-вечаюш.ей равенству <з = 0,5, было получено качественное согласие с опытом расчетные профили температуры по этой схеме оказались более заполненными", однако степень совпадения расчета с опытом все еще оставалась неудовлетворительной. В частности, следует напомнить, что при эксперименте в свободных турбулентных течениях всегда наблюдается большая толщ.ина эффективного теплового слоя, чем динамического, и более быстрое падение температуры по оси струи, чем скорости. Иными словами, турбулентная диффузия тепла (вещества) протекает быстрее, чем количества движения.  [c.82]


Коэффициенты турбулентной диффузии на много порядков больше, чем коэффициенты молекулярной диффузии. Поэтому, если только мы не рассматриваем диффузию около твердой новерхности (где турбулентность гасится), обычно допустимо вообще пренебречь молекулярной диффузией. Турбулентные аналоги чисел Прандтля и Шмидта определяются соответственно как отношения кинематической турбулентной вязкости к коэффициентам турбулентной температуропроводности или турбулентной диффузии. Их численные величины основываются на измерениях профилей скорости, темиературы и концентрации в процессах турбулентного перемешивания. Турбулентные числа Прандтля и Шмидта приблизительно одинаковы как для жидкостей, так и для газов. Их численная величина — около 0,7 это показывает, что при турбулентном перемешивапии теплота и вещество переносятся с одинаковой скоростью и что эта скорость больше, чем скорость турбулентного переноса количества движения [Л. 11].  [c.454]

На фиг. 2.20 показана интенсивность турбулентности потока для различных размеров и расходов переносимых твердых частиц (массовый расход вещества частиц во всех случаях от 90 до 180 г1сек). Из фиг. 2.20 с.ледует, что при содержании частиц до 0,06 3 на 1 3 воздуха, реа.лизованном в этих экспериментах, их присутствие не оказывает существенного влияния на турбулентность воздушного потока. То же самое подтверждается данными о коэффициенте турбулентной диффузии и масштабе турбулентности, приведенными на фиг. 2.21 и 2.22. Измеренные значения коэффициента турбулентной диффузии несколько превышают полученные для случая круглой трубы. Коэффициенты диффузии при турбулентном течении в трубах впервые измерены в работе  [c.90]

Построим теперь динамическую модель процесса абсорбции в насадочном аппарате, учитывающую продольное перемешивание фаз. В реальных аппаратах продольное перемешивание фаз объясняется рядом причин прежде всего различием скоростей движения фаз в разных точках аппарата и, кроме того, турбулентной диффузией фаз, уносом частиц одной фазы (например жидкости) потоком другой фазы (газа). Подробное теоретическое описание продольного перемешивания, учитывающее все перечисленные факторы, в настоящее время отсутствует. Для описания структуры потоков в аппарате обычно используют упрощенные модельные представления. Наиболее распространенными из них являются ячеечная и диффузионная модели. В данной книге для описания структуры потоков используем вторую из этих моделей, согласно которой перемешивание фаз в аппарате аналогично процессу диффузии. В диффузионных процессах при наличии градиента концентрации какого-либо вещества возникает поток этого вещества, называемый диффузионным потоком, который пропорционален градиенту концентрации. Поскольку процесс перемешивания аналогичен процессу диффузии, можно считать что и в насадочном аппарате возникает поток вещества определяемый законом Фика / = = —pZ)grad0, который в одномерном случае имеет вид / =  [c.17]

Основная и важнейгаая особенность процесса Г.— способность к распространению в пространстве. Вследствие процессов переноса диффузии и теплопроводности) теплота или активные центры, накапливающиеся в горящем объёме, могут передаваться в соседние участки горючей смеси и инициировать там Г. В результате возникает движущийся в пространстве фронт Г., его скорость и наз. линейной скоростью Г. Массовая скорость г. т—ри, где р — плотность исходной смеси. В отличие от детонации, где хим. реакция возникает в результате быстрого и сильного сжатия вещества удари,ой волной, скорость Г. невелика (10 —10 м/с), поскольку оно обусловлено сравнительно медленными нроцесса.ми переноса. Если движение газовой среды турбулентно, то скорость Г. увеличивается вследствие турбулентного перемешивания.  [c.516]

Существование конвективных оболочек приводит к генерации потока, механич. энергии, диссипация к-рой ведёт к образова[Шю горячих ( 10 —10" 1 ) корой (см, Звёздные атмосферы). С этим же связаны разл. нестационарные явлепия, наблюдаемые у красных карликовых звёзд, звёзд типа Т Тельца и др. В К. з. в условиях турбулентной конвекции резко усиливаются процессы переноса энергии, импульса а диффузия вещества. Это приводит к практически однородному хим. составу конвективных ядер, быстро.чу установлению твердотельного вращения, установлению синхронного вращения звё зд в двойных системах (последнее — особенно быстро при наличии мощных конвективных оболочек). Увеличение омич, диссипации в К. з. нарушает ус.Човпе сохранения магн. потока и создаёт условия (в сочетании с вращением звезды) для генерации магн. поля механизмом гидромагнитного дияа.т.  [c.433]

Перенос излучения наружу носит диффузионный характер, при к-ром фотоны многократно поглощаются и переизлучаются. Величина потока лучистой энергии внутри С. прямо пропорциональна градиенту темп-ры и обратно пропорциональна коэф. непрозрачности V, = 1/рЯ (р — плотность вещества), характеризующему способность газа поглощать и рассеивать излучение. Однако не на всём пути от центра к поверхности солнечная энергия переносится излучением. На расстоянии примерно 0,7 Дд от центра вещество становится конвективно неустойчивым, и выше этого уровня энергия переносится преим. турбулентными потоками вещества. В конвективной зоне темп-ра невелика по сравнению с темп-рой ядра. В результате увеличивается число электронов, находяпщхся в связанных состояниях в атомах водорода и др. элементов. Это ведёт к увеличению непрозрачности газа, большему сопротивлению диффузии излучения и возрастанию градиента темп-ры. Конвективная неустойчивость наступает, если аос. значение градиента темп-ры станет больше нек-рой критич. величины, называемой адиабатич. градиентом. Скорости конвективных потоков возрастают номере продвижения к поверхности от 10 см/с до 10 см/с. Вблизи поверхности С. на расстоянии 0,999 Л эффективность конвективного теплопереноса резко падает вследствие низкой плотности вещества. Здесь энергия вновь переносится излучением. Вероятно, этот верх, слой конвективной зоны ответствен за наблюдаемую грануляц. структуру поверхности С.  [c.590]

ТУРБУЛЕНТНАЯ ДИФФУЗИЯ плазмы — разновидность аномальной диффузии плазмы, заключающаяся в аномаль 1о быстром переносе энергии и массы вещества плазмы под дсйсгвием эл.-.магн. флуктуаций с плотностью энергии, значительно превышающей тепловой равновесный уровень. Скорость Т. д, существенно зависит от корреляции движения частиц плазмы с флуктуац. эл.-магн. полями, Т. д. вызывает аномально быстрые переносы как в лаб. плазме (токамаки, стсллараторы и др. плазменные установки), так и в космической (солнечный ветер, околоземная ударная волна, межзвёздный ионизованный газ и т. д.),  [c.176]

Для интенсификации сжигания газового топлива необходимо ускорить смешение его с воздухом и создать условия для увеличения скорости турбулентного распространения пламени и поверхности фронта пламени. Поверхность фронта пламени может быть увеличена организацией развитого зажигания по сечению горелки. Скорость турбулентного распространения пламени определяется скоростью химического реагирования, которая увеличивается с ростом температуры и концентрации реагирующих веществ. С целью повышения температуры смеси применяют предварительный подогрев воздуха, используемого для горения. Однако основной нагрев горючей смеси до ее воспламенения происходит в топочной камере за счет диффузии в нее высоконагретых продуктов сгорания. Для ускорения тепло-и массообмена сжигание должно быть организовано в высокотурбулизированном потоке и, следовательно, в потоке с повышенной скоростью. При этом должно быть организовано устойчивое зажигание, обеспечивающее воспламенение у устья горелки при высокой скорости истечения смеси из горелок.  [c.65]


Определение размеров труб. Весьма ответственным устройством в системе охраны биосферы от вредных выбросов ТЭС являются газоотводящие устройства — дымовые трубы. Для того чтобы не были превышены концентрации вредностей на уровне дыхания, соответствующие значениям, приведенным в табл. 17.2, требуется уменьшение концентраций вредностей в дымовых газах на четыре порядка (примерно в 10 тыс. раз). Такую степень очистки дымовых газов по оксидам серы, в частности, нельзя обеспечить ни одним известным способом лучшие сероулавливающие установки могут обеспечить снижение концентрации лишь в 10—20 раз. Поэтому природоохранные мероприятия в отношении уменьшения концентраций токсичных веществ включают две обязательные стадии — очистка в возмол<сных пределах дымовых газов в газоочистных устройствах ТЭС и последующее рассеивание остаточных вредностей за счет турбулентной диффузии в больших объемах атмосферного воздуха.  [c.259]

Молекулярная диффузия есть процесс переноса вещества благодаря подвижности молекул. Постепенное размывание первоначально резкой границы между двумя различными жидкостями — обычный 1пример молекулярной диффузии. Градиенты температуры, градиенты давления и внешние силовые поля также влияют на молекулярный перенос вещества. Эти эффекты обычно невелики, однако легко найти примеры, в которых они существенны. Эти примеры включают в себя разделение веществ в высокоскоростных центрифугах и осаждение твердых частиц в суспензиях, где гравитационное поле вызывает перемещение твердых частиц относительно жидкой фазы. Если жидкость находится в движении, мы должны также тщательно различать случаи ламинарного и турбулентного течений, так как, если течение турбулентно, макроскопический обмен благодаря турбулентному перемешиванию частиц жидкости обычно значительно превосходит обмен благодаря молекулярным процессам. Обычная молекулярная диффузия часто называется градиентной диффузией, так как она может быть описана выведенным из опыта законом, согласно которому интенсивность переноса массы некоторого вещества на единицу площади пропорциональна градиенту концентрации этого вещества. Это соотношение известно как первый закон Фика и аналогично закону Ньютона для вязкости и закону Фурье для теплопроводности, как указывалось в 3-5.  [c.445]

Уравнение переноса вещества при турбулентном течении можно получить путем использования аналогии между молекулярной и турбулентной диффузией. Вывод этого уравнения переноса подобен тому, который использовался для получения уравнений Рейнольдса для турбулентного течения [уравнение (11-22)] из уравнений Навье —Стокса. Как и в 11-4, мы представляем компоненты мгновенной скорости в виде суммы средней по времени и флуктуациониой (пульсационной) составляющих. Так,  [c.452]

Осредненное течение жидкости теперь описывается средней скоростью и (объемный расход потока, деленный на площадь поперечного сечения), и, следовательно, конвективный перенос вещества, обусловленный осреднен-ным течением в направлении оси х, выражается членом Ud Aldx. Подразумевается также, что концентрация са представляет собой среднюю по всему поперечному сечению величину. В потоках со сдвигом, которые можно наблюдать в трубах ли открытых каналах, распределение скорости не является однородным. Разность продольного конвективного переноса вещества, который связан с действительным распределением скоростей, и переноса. вещества, который вычисляется по средней скорости, должна быть, следовательно, учтена диффузионным членом. Этот эффект известен как продольная дисперсия, и символ Ет используется, чтобы отличить коэффициент продольной дисперсии от коэффициента турбулентной диффузии Е .  [c.455]

Содержание книги можно условно разделить на две части, в первой из которых (главы 1-5) подробно излагаются методы математического описания турбулентных течений многокомпонентных реагирующих газовых смесей, а во второй (главы 6-8) представлены конкретные примеры численного моделирования аэрономических задач. Первая глава, имеющая вводный характер, содержит некоторые общие положения теории турбулентности и обсуждение вопросов специфики природных сред, в которых многокомпонентная турбулентность играет важную роль. Во второй главе рассмотрена феноменологическая теория тепло- и массопереноса в ламинарной многокомпонентной среде и методами термодинамики необратимых процессов, с учетом принципа взаимности Онзагера, выведены определяющие соотношения для термодинамических потоков диффузии и тепла в многокомпонентной смеси газов. Третья глава посвящена построению модели турбулентности многокомпонентного химически активного газового континуума. С использованием средневзвешенного осреднения Фавра получены дифференциальные уравнения баланса вещества, количества движения и энергии (опорный басис модели) для описания среднего движения турбулентной многокомпонентной смеси реагирующих газов, а также дан вывод реологических соотношений для турбулентных потоков диффузии, тепла и тензора рейнольдсовых напряжений. В четвертой главе развита усложненная модель турбулентности многокомпонентного континуума с переменной плотностью, опирающаяся (в ка-  [c.7]

Под воздействием турбулентной диффузии, за счет которой, в основном, обеспечивается постоянство состава атмосферного газа с высотой (исключая химически активные малые компоненты), формируются структурные свойства гомосферы, в отличие от гетеросферы, для которой основным механизмом переноса вещества является молекулярная диффузия в разреженной газовой среде. В турбопаузе планеты процессы молекулярного и турбулентного переноса, конкурируя между собой, в значительной степени определяют закономерности структуры, динамики и энергетики верхней атмосферы. Турбулентным перемешиванием в гомосфере в значительной мере контролируется также подвод атомов водорода на уровень экзобазы и, тем самым, скорость диссипации (в данном случае - утекания) водорода из атмосферы Чемберлен и Хантен, 1987).  [c.44]

Мы начнем с вывода осредненных дифференциальных уравнений баланса вещества, количества движения и энергии (опорный базис модели), предназначенных для описания развитых турбулентных течений многокомпонентной смеси химически активных газов, и проанализируем физический смысл отдельных членов этих уравнений ( ЗЛ). Особое внимание будет уделено выводу (традиционным способом, основанном на понятии пути смешения) замыкающих реологических соотношений для турбулентных потоков диффузии, тепла и тензора турбулентных напряжений Рейнольдса ( 3.3). Прогресс в развитии и применении полуэмпирических моделей турбулентности первого порядка замыкания (так называемых градиентных моделей) для однородной сжимаемой жидкости (см., например, Таунсенд, 1959 Бруяцкий, 1986 Ван Мигем, 1977)) позволил получить обобщения некоторых из подобных моделей на важный для целей геофизики и аэрономии случай свободных стратифицированных течений многокомпонентной реагирующей смеси с поперечным сдвигом скорости Маров, Колесниченко, 1987).  [c.114]

Вместе с тем, оценивая в целом состояние проблемы замыкания первого порядка, следует признать, что в настоящее время фактически не существует общей феноменологической теории турбулентной теплопроводности и турбулентной диффузии для многокомпонентных смесей. Используемые в литературе градиентные соотношения (см., например, Монин, Яглом 1965 Ван Мигем, 1977 Лапин, Стрелец, 1989)) не обладают достаточной общностью и получены, в основном, для однородной жидкости, причем либо для турбулентных потоков с четко выраженным доминирующим направлением, либо при сильных и не всегда оправданных предположениях, таких, например, как равенство путей смешения для процессов турбулентного переноса количества движения, тепла или вещества пассивной примеси (см. 3.3). В связи с этим, возникает необходимость рассмотрения других подходов к проблеме замыкания гидродинамических уравнений среднего движения смеси на уровне моделей первого порядка, например, в рамках термодинамического подхода к теории турбулентности сжимаемого газового континуума. Так, онзагеровский формализм неравновесной термодинамики позволяет получить наиболее общую структуру реологических соотношений для турбулентных потоков диффузии и тепла в многокомпонентной смеси, в том числе, в виде обобщенных соотношений Стефана-Максвелла для турбулентной многокомпонентной диффузии и соответствующего им выражения для  [c.209]


Исторически изучение взаимосвязей между сложной совокупностью аэрономических процессов часто проводилось в рамках одномерных моделей, когда осреднение выполняется по широте и долготе, причем вертикальная составляющая вектора гидродинамической скорости оказывает не меньшее влияние на состав атмосферы, чем диффузия и горизонтальный перенос (см., например, Кошелев, 1976 Лкмаев, Швед, 1978)). При этом вертикальный перенос вещества за счет ветра (адвекция) и турбулентного переноса описывается, как вертикальная турбулентная диффузия с некоторым эффективным коэффициентом турбу-  [c.236]

С учетом этих соображений представлялось целесообразным критически проанализировать данный подход, опираясь на полученные нами результаты изучения многокомпонентных турбулентных сред. К сожалению, как оказалось, в ряде работ, посвященных численному моделированию процессов массопереноса в верхней атмосфере допущены определенные неточности Атмосфера. Справочник, 1991). Так, например, используемые выражения для потоков турбулентной диффузии не обеспечивают равенства нулю суммарного потока вещества, т.е. не выполняется условие (3.1.29). С другой стороны, расчеты молекулярного массопереноса либо проводятся по формулам, взятым из ранней работы Колегров и др., 1966), либо основаны на определяющих соотношениях для потоков молекулярной диффузии с несимметричными коэффициентами диффузии (неудачно введенными, как отмечалось нами ранее, в монографии  [c.236]


Смотреть страницы где упоминается термин Диффузия турбулентная вещества : [c.340]    [c.154]    [c.273]    [c.18]    [c.149]    [c.227]   
Механика жидкости и газа (1978) -- [ c.548 ]



ПОИСК



Диффузия

Диффузия вещества

Диффузия турбулентная



© 2025 Mash-xxl.info Реклама на сайте