Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Форма дифференциальная инвариантная

Фильтр низких частот 271, 274 Фокус кинетический 205 Форма дифференциальная инвариантная 385  [c.542]

В абсолютном исчислении (тензорном), которое систематически развивает коварианты и инварианты римановой геометрии, величины образуют тензор . Величина ds имеет абсолютное значение, потому что расстояние между двумя точками не зависит от системы координат. Она является абсолютной , инвариантной величиной, не зависящей от системы отсчета. Тензор определяется компонентами инвариантной дифференциальной формы. Например, инвариантная дифференциальная форма первого порядка  [c.41]


В седьмой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. Разработан и апробирован алгоритм численного решения таких задач, основанный на идее инвариантного погружения, в котором проблема интегрирования первоначальной краевой задачи редуцируется к решению задачи Коши для жестких матричных дифференциальных уравнений. Приведенные тестовые примеры позволяют сделать вывод об эффективности метода. Показано, что сочетание метода Бубнова — Галеркина с обобщенной формой метода инвариантного погружения дает эффективный инструмент численного исследования устойчивости и свободных колебаний слоистых композитных оболочек вращения. Разработан метод численного определения матрицы Грина краевой задачи и на примере проблемы выпучивания длинной панели по цилиндрической поверхности показана его эффективность в задачах устойчивости оболочек вращения. Метод решения нелинейных краевых задач, объединяющий в себе итерационный процесс Ньютона с методом инвариантного погружения, рассмотрен в параграфах 7.4, 7.5.  [c.14]

Фундаментальные характеристические свойства системы дифференциальных уравнений теории оболочек (например, ее тип или порядок) инвариантны относительно невырожденных преобразований координат на отсчетной поверхности Q. Однако аналитическое представление дифференциальных операторов этой теории существенно зависит от используемой координатной системы, и надлежащим выбором последней им можно придать наиболее удобную, каноническую" форму. Такую форму дифференциальные уравнения теории оболочек получают в ортогональной системе координат, связанной с линиями кривизн поверхности Q. В этой системе координат, обычно и используемой в механике тонкостенных систем, ниже формулируются уравнения неклассической теории оболочек. Итак, пусть х , — ортогональная система координат, координатные линии которой — линии кривизны поверхности Q. Пусть —  [c.68]


Чтобы осуществить построение дифференциальных форм, инвариантных относительно преобразований координат надо иметь в распоряжении  [c.388]

После этих замечаний можно прийти к заключению, что построение одной дифференциальной формы, инвариантной относительно систе.иы уравнений (II. 379) ила относительно канонической системы дифференциальных уравнений динамики, позволяет построить ряд инвариантных дифференциальных форм.  [c.389]

Основой построения дифференциальных форм, инвариантных относительно преобразований координат х , определенных равенствами (11.389), является вектор элементарного перемещения 6г. Полное количество его компонент равно 2 V. Первые N компонент — контравариантные 6г = (/= 1, 2,. ..  [c.389]

Применяя действия тензорной алгебры, можно построить из. векторов А, и 6x1 произвольное количество дифференциальных форм, инвариантных  [c.389]

Можно применить к вектору Х действие абсолютного дифференцирования ( 210 первого тома), и мы найдем ряд тензоров высших рангов и соответствующих им инвариантных дифференциальных форм. При этом вектор X) надо рассматривать как функцию координат х, определяющих начальные условия движения механической системы.  [c.390]

Подобно тому как движение механической системы можно заменить движением одной частицы в некотором -мерном римановом пространстве, причем инерция всей системы входит в кинетическую энергию этой воображаемой частицы, так и динамическое действие всех сил может быть представлено с помощью одного вектора, действующего на эту частицу. Этот вектор имеет п компонент в соответствии с числом измерений пространства конфигураций. Компоненты вектора определяются аналитически как коэффициенты инвариантной дифференциальной формы первого порядка, которая выражает полную работу всех действующих сил при произвольном бесконечно малом изменении положения системы.  [c.51]

Ниже мы увидим, что инвариантность дифференциальной формы (7.2.4) не является обязательным свойством, присущим каждому каноническому преобразованию. Преобразования, удовлетворяющие этому условию, образуют лишь подгруппу в полной группе канонических преобразований. Даже внутри этой подгруппы формулы (7.2.3) выделяют весьма узкую группу преобразований, отличающуюся тем  [c.229]

Преобразования Матье и Ли. В предыдущем пункте было показано, что инвариантность дифференциальной формы (7.2.4) приводит к инвариантности канонических уравнений. Инвариантность дифференциальной формы (7.2.4) может быть получена, однако, и в том случае, если не требовать выполнения (7.2.3). Эти более общие преобразования, известные уже Якоби, были изучены французским математиком Матье (в 1874 г.). Поэтому их иногда называют  [c.233]

Резюме. Преобразования Матье определяются требованием инвариантности дифференциальной формы Для выполнения этого требования должно существовать по крайней мере одно соотношение между qi и Qi, не содержащее р,-. Преобразования Матье могут быть классифицированы по числу соотношений, существующих между qt и Q,-, которые могут быть заданы заранее. Минимальное число соотношений равно 1, а максимальное п. Последний случай соответствует рассматривавшимся ранее точечным преобразованиям, которые составляют, таким образом, особую подгруппу преобразований Матье.  [c.237]

Канонические преобразования общего типа. Инвариантность дифференциальной формы (7.2.13) не является абсолютно необходимой для сохранения вида канонических уравнений. Существует более широкая группа преобразований, которые оставляют инвариантными канонические уравнения. Предположим, что дифференциальная форма (7.2.13) преобразуется по следующему закону  [c.237]

Мы получили наиболее общее условие для канонического преобразования. Требование инвариантности дифференциальной формы мы заменили условием  [c.238]

Можно ли ввести что-нибудь подобное в гамильтоновом фазовом пространстве Имеются ли какие-либо инвариантные дифференциальные формы, которые могли бы в нем играть роль формы ds , как в лагранжевом пространстве конфигураций Такая дифференциальная форма, связанная с каноническими преобразованиями и инвариантная при этих преобразованиях, действительно существует, хотя она и отличается принципиально от римановой формы ds . Она также квадратична относительно дифференциалов, но связана при этом с двумя перемещениями и не имеет ничего общего с расстоянием. Геометрия фазового пространства имеет, таким образом, необычную метрику. Она похожа скорее на некую геометрию, в которой могут измеряться не расстояния, а площади. Поскольку основной дифференциальный инвариант канонических преобразований линеен по каждому из двух бесконечно малых перемещений, мы будем называть его билинейной дифференциальной формой . На основе этой инвариантной дифференциальной формы может быть построена полная теория канонических преобразований.  [c.241]


Это в свою очередь эквивалентно инвариантности дифференциальной формы  [c.245]

На практике лагранжианы, гамильтонианы и первые интегралы редко зависят от времени, поэтому принято всегда ассоциировать существование интеграла с инвариантностью гамильтониана (хотя, строго говоря, как мы видели, это не совсем оправдано). Эта трактовка восходит к Ли. Изложенной только что теоремы точно в том виде, как она здесь дана, сам Ли не формулировал, поскольку оперировал, главным образом, не с обыкновенными дифференциальными уравнениями в канонической форме, а с некоторым тесно связанным с ними уравнением в частных производных, к изучению которого мы приступаем в следующей теме.  [c.138]

Уравнения равновесия сплошной среды (1.5.4), (1.5.5) записаны здесь в инвариантной форме. Их запись в декартовых координатах 1/-объема имеет вид трех дифференциальных уравнений статики сплошной среды  [c.23]

Пользуясь методом масштабных преобразований физических уравнений ( 3.2), получим условия инвариантности системы уравнений (6.14)—(6.18) для модели и натуры. Эти условия, как было показано в гл. 3, устанавливают соотношения между выбранными масштабами переменных в форме уравнений связи (индикаторов подобия). Для системы дифференциальных урав-  [c.115]

Очень широкое распространение в механике и физике получили так называемые автомодельные решения, характеризующиеся существованием некоторых комбинаций независимых переменных (автомодельных переменных), которые соответствуют опре деленным свойствам подобия или инвариантности рассматриваемых классов физи ческих решений. Методы анализа размерностей физических величин, определяющих задачу, позволили [8] осуществить понижение размерности для весьма широкого круга физических и механических задач. Особенно эффективным в конструктивном плане оказалось в ряде ситуаций сведение сложной исходной задачи к системе обыкновенных дифференциальных уравнений, в которой в качестве независимой переменной высту пает автомодельная переменная. Это позволило получать классы точных решений в замкнутой форме, например, знаменитое решение газодинамической задачи о точечном взрыве [8], и осуществить качественный и детальный количественный анализ важных задач в неинтегрируемых случаях.  [c.17]

Задача (7.3.12) — краевая задача неклассической теории оболочек, и ее интегрирование требует применения экономичных и эффективных численных методов, учитывающих существенные особенности таких задач — матричную структуру решения и сильную численную неустойчивость неклассических дифференциальных уравнений слоистых оболочек. Этим требованиям в полной мере отвечает разработанный в предыдущем разделе метод инвариантного погружения в его обобщенной форме. Накопленный вычислительный опыт [17—19, 21, 23, 24, 30] позволяет рекомендовать эту модификацию метода к широкому использованию в задачах прочности, устойчивости, динамики оболочек.  [c.208]

В качестве примера рассмотрим задачу устойчивости слоистой длинной цилиндрической круговой изотропной жестко защемленной панели радиуса R и толщины Л, нагруженной равномерно распределенным давлением интенсивности Р. В параграфе 4,5 получено аналитическое решение этой задачи сравнение установленных там результатов с результатами, полученными по методу инвариантного погружения позволит оценить практическую пригодность и эффективность последнего. Как показано в параграфе 4.5, исследование устойчивости длинной цилиндрической жестко защемленной панели сводится к интегрированию системы дифференциальных уравнений (4.5.5) при краевых условиях (4.5.6). Эти уравнения и условия представим в матричной форме  [c.208]

Современная механика основывается на ряде закономерностей, установленных в форме, независимой от выбора координатных систем, применяемых при получении п исследовании упомянутых закономерностей. Такая форма называется инвариантной. Математическим аппаратом, который п iзвoляeт находить основные соотношения механики в инвариантной форме, является тензорное, или абсолютное дифференциальное исчисление. Поэтому мы начнем изложение механики с рассмотрения основ векто]эной и тензорной алгебры. Кроме того, будут приведены также некоторые сведения из векторного анализа. Основы тензорного анализа излагаются нами ниже одновременно с соответствующими положениями теоретической механики и не включены в настоящий раздел.  [c.24]

Все дальнейшие рассуждения будут аналогичны рассуждениям предыдущего пункта. Инвариантность дифференциальной формы гарантирует инвариантность канонических уравнений и снова функция Гамильтона Н оказывается инвариантом преобразования. Более того, мы снова можем включить время t в число позиционных координат. .., qn в качестве дополнительной переменной, перейдя к параметрической форме канонических уравнений. В результате получим реономиую форму преобразований Матье, характеризуемую инвариантностью дифференциальной формы  [c.236]

Инвариантные преобразования (3.6), в отличие от других замен назависимых переменных, останавливающих движущиеся границы [3.2, 3.13, 3.33, 3.43, 3.50], позволяют сделать то же самое, не изменяя формы дифференциального уравнения (3.1). Если при этом краевые условия имеют вид (3.2), то в новых переменных иХ задача (3.1), (3.2) сведется к решению волнового уравнения (3.7) с граничными условиями импедансного типа (3.9). Решая ее и возвращаясь к переменным X и с помощью (3.8), найдем решение исходной задачи.  [c.92]

Дифференциальная форма Ф, удовлетворяющая указанному условии , нз-зЫ1ва,ется, инвариантной относительно заданной системы дифференциальных уравнений (И. 379).  [c.385]


Интегральные инварианты не принадлежат к объектам тензорного исчисления, так как они не подчиняются законам преобразования тензорных величин. Но дифференциальные формы, являющиеся основой интегральных инвариантов, удовлетворяют условиям инвариантности относительно некоторых точечных преобразований, о которых идет речь ниже, и, в ином с.мысле, относительно некоторой системы дифференциальных уравнений. Это обстоятельство позволяет применить тензорное исчисление к вопросам теории интегральных инвариантов.  [c.386]

Все сказанное позволяет высказать общее утверждение для построения дифференциальных форм, инвариантных относительно системы дифференциальных уравнений (11.379), достаточно применить действия тензорного исчисления в системе начальных координат х д. Полученные выражения инвариантны в указанно.м выше смысле и в системе координат Хг, если переход к этим координатам устанавливается формулами (П.386Ь).  [c.387]

Из вида подинтегрального выражения (7.2.2) ясно, что канонические уравнения заведомо сохранятся, если, преобразуя Pi, одновременно потребовать инвариантности дифференциальной формы  [c.229]

Билинейная дифференциальная форма. В любой теории преобразований имеются основные величины, которые при преобразовании не меняются. Они являются основными инвариантами, которые определяют собой природу преобразования. Начав изучать канонические преобразования, мы установили инвариантность дифференциальной формы 2 pibqi, откуда следовала инвариантность канонических уравнений. Однако затем выяснилось, что канонические уравнения остаются инвариантными и при более общих условиях. Необходимое и достаточное условие каноничности  [c.240]

Подобный критерий может быть применен и к дифференциальной форме (7.5.1). Проинтегрируем (7.5.1) вдоль любой замкнутой кривой L в фазовом пространстве. Тогда в левой части мы получим два криволинейных интеграла, поскольку каждая р, <7)-точка связана преобразованием с соответствующей (Я, Q)-тoчкoй. Интеграл в правой части обращается в нуль. Следовательно, мы получаем принцип инвариантности, в котором уже отсутствует неопределенная функция S,  [c.242]

Резюме. Условие того, что преобразование является каноническим, может быть сфомулировано без помощи производящей функции S. Характерным свойством канонических преобразований является инвариантность циркуляции вдоль любой замкнутой кривой в фазовом пространстве. Это же самое свойство может быть представлено в дифференциальной форме. Мы получаем определенное дифференциальное выражение, билинейную дифференциальную форму , инвариантную относительно канонических преобразований. Эта билинейная дифференциальная форма аналогична величине ds в метрической геометрии. Однако в то время, как линейный элемент соответствует одному бесконечно малому перемещению, билинейный дифференциал соответствует двум бесконечно малым перемещениям. Поэтому он скорее подобен элементу площади, а не элементу расстояния.  [c.245]

Устанавливаемое В. н. м. свойство движения сводится во многих случаях (но не всегда) к тому, что для истинного движения системы нек-рая физ. величина, являющаяся ф-цией кинематич. и динамич. характеристик зтой системы, имеет экстремум (минимум или максимум). При этом В. II. м, могут отличаться друг от друга видом той физ. величины (той ф-]1ии), к-рая для истинного движения является экстремальной, а также особенностями механич. систем и классами тех движений. для к-рых это экстремальное свойство имеет место. По форме В. н, м. можно разделить на дифференциальные, устанавливающие, чем истинное движение системы отличается от кинематически возможных в каждый данны) момент времени, и интегральные, устанавливающие это различие для перемещений, совершаемых системой за конечный промежуток времени. В рамках механики дифференц. принципы имеют более общий характер, т. к. они приложимы к системам с любыми голономными и неголономными связями (см. Голочом-пая система Пеголопомная система). Интегральные принципы в их наиб, компактной форме приложимы только к голономным и даже только к консервативным системам. Однако выражение их через энергию и инвариантность по отношению к преобразованиям координат системы делает ати принципы приложимыми далеко за пределами классич. механики.  [c.246]

Таким образом, хотя соотношения Кодацци—Гаусса позволяют считать маспттабы Rq для пологих поверхностей независимыми, система дифференциальных уравнений теории пологих оболочек оказывается инвариантной по отношению к аффинным преобразованиям подобия лишь в том случае, если масштабы /д, ho, связаны дополнительными условиями в форме (6.25).  [c.117]


Смотреть страницы где упоминается термин Форма дифференциальная инвариантная : [c.390]    [c.616]    [c.217]    [c.83]    [c.385]    [c.385]    [c.387]    [c.66]    [c.41]    [c.227]    [c.245]    [c.287]    [c.605]    [c.605]    [c.197]   
Курс теоретической механики. Т.2 (1977) -- [ c.385 ]



ПОИСК



Инвариантность

Инвариантный тор

Лоренц инвариантная форма дифференциального уравнения движения материальной точки

Форма дифференциальная



© 2025 Mash-xxl.info Реклама на сайте