ПОИСК Статьи Чертежи Таблицы Все дальнейшие рассуждения будут аналогичны рассуждениям предыдущего пункта. Инвариантность дифференциальной формы гарантирует инвариантность канонических уравнений и снова функция Гамильтона Н оказывается инвариантом преобразования. Более того, мы снова можем включить время t в число позиционных координат ..., qn в качестве дополнительной переменной, перейдя к параметрической форме канонических уравнений. В результате получим реономиую форму преобразований Матье, характеризуемую инвариантностью дифференциальной формы [Выходные данные]