Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование процессов повреждения и разрушения

Модернизированная установка ИМАШ-ЦКТИ позволила провести исследование процессов деформации и разрушения ряда высокожаропрочных сплавов на никелевой основе и получить данные об основных особенностях накопления повреждений в условиях работы этих материалов на термическую усталость.  [c.47]

Прогнозирование усталостной долговечности материалов и конструкций основано как на экспериментальных исследованиях, так и на модельных представлениях о реализуемых процессах повреждения и разрушения материала в условиях циклического нагружения. Для оценки усталостной долговечности существуют различные модели, направленные главным образом на анализ следующих процессов повреждения и разрушения  [c.35]


Представленные в настоящей и следующей главах исследования также основываются на взаимосвязи между физическими процессами деформирования и разрушения и макроскопическим поведением материала. Отличие от других работ указанного направления состоит в выборе структурного уровня рассмотрения физических механизмов и процессов — это в основном структурный уровень, промежуточный между микроскопическим и макроскопическим, т. е. мезоскопический уровень. Для анализа повреждения и разрушения поликристаллических металлов такой структурный уровень, как правило, соответствует зерну. Такой выбор позволяет, с одной стороны, уйти от излишней детализации атомных, дислокационных и других структурных процессов, с другой — сформулировать критерии разрушения в терминах механики сплошной среды.  [c.51]

Преимущественное развитие усталостных трещин происходит в поверхностных слоях, что обусловлено более ранним по сравнению с остальным объемом металла повреждением поверхностных слоев из-за более раннего накопления в этих слоях критической плотности дислокаций [83]. Поскольку процесс усталости во всей массе протекает неоднородно, то для изучения изменения свойств в процессе циклического нагружения необходимы характеристики, которые позволяли бы судить о процессах, происходящих в локальных объемах металла. В связи с этим при изучении усталостного разрушения широкое применение нашли методы измерения твердости и микротвердости, рентгеновского анализа, оптической и электронной микроскопии. Результаты этих исследований представляют большой интерес для выявления сходства и различия кинетики накопления структурных повреждений и разрушения в условиях объемного циклического нагружения и при фрик-ционно-контактной усталости, поскольку аналогичные методы исследования широко применяются при трении. Методы интегральной оценки структурных изменений, такие, как измерение электросопротивления (проводимости), внутреннего трения, магнитных свойств, несмотря на то что требуют специальной подготовки образцов и соответственно испытательного оборудования, также могут быть полезны для исследования процессов трения.  [c.33]

Исследование процессов развития усталостного разрушения и характеристик сопротивления усталости в пределах каждого этапа испытаний (до появления первой трещины и в период ее постепенного развития) в настоящее время приобретает все большее значение. Интерес к поэтапному исследованию усталости как материалов, так и натурных деталей особенно возрос в связи с изучением закономерностей накопления повреждений при нестационарно изменяющихся режимах нагружения, присущих эксплуатации большинства современных конструкций. -  [c.183]


Многоуровневый характ формирования реакции материала внешнему механическому воздействию предопределяет возможность многоуровневого феноменологического описания. Каждый структурный уровень связан с некоторой системой элементов неоднородности (естественных или вызванных поврежденностью). Анализ введенных на структурном уровне напряжений и деформаций как осред-ненных величин служит средством исследования механического поведения материала в рамках соответствующего уровня феноменологии. Двухуровневое рассмотрение процессов деформирования и разрушения положено в основу классификации Давиденкова-Фридмана и структурно-феноменологического подхода в механике композитов [247].  [c.21]

Исследования по изучению закономерностей накопления повреждений и разрушения были выполнены в первую очередь на поликристаллических металлах и сплавах, поскольку этого требовала практика использования этих материалов в реальных конструкциях. Кроме того, несмотря на то, что процессы пластической деформации в поликристаллах более сложны, зарождение микротрещин и других дефектов у поликристаллических металлов происходит на более ранних стадиях деформиро-  [c.39]

Причина различной скоростной зависимости критических параметров при внутри- и межзеренном разрушении заключается в разной природе физических процессов, приводящих к накоплению меж- и внутризеренных повреждений. Как уже отмечалось, межзеренное разрушение в рассматриваемых условиях связано с зарождением, ростом и объединением пор по границам зерен. Следует подчеркнуть, что во многих работах [199, 256] разрушение по границам зерен связывается с ростом микротрещин, зародившихся в стыках трех зерен. Однако выполненные в последнее время фрактографические исследования [256] достаточно убедительно показали, что указанные механизмы не являются альтернативными в обоих случаях процесс развития повреждений является кавитационным [256, 326]. Более легкое зарождение пор в тройных стыках приводит к неоднородному развитию повреждений и формированию клиновидных микротрещин, которые в процессе роста поглощают мелкие поры, зарождающиеся по всей поверхности границ зерен [256]. Таким образом, указанная дифференциация межзеренных повреждений является достаточна условной и при описании процессов накопления повреждений на границах зерен целесообразно исходить из моделирования их кавитационными механизмами.  [c.154]

Многочисленными опытами было установлено, что при переменном напряжении, превышающем определенную величину для данного материала, после некоторого числа перемен напряжений в материале появляется трещина. Как установлено последними исследованиями, процесс усталости связан с постепенным накоплением дефектов кристаллической решетки и, как следствие этого, с постепенным развитием усталостных повреждений. Дефект кристаллической решетки постепенно превращается в микротрещину, которая через определенное число циклов нагружения переходит в макротрещину, захватывающую все большую толщину металла. Пластическая деформация сосредоточивается только в устье трещины, поэтому заметных остаточных деформаций при разрушении не обнаруживается.  [c.337]

Столь подробное экспериментальное и теоретическое исследование пластических зон в 25, 26 связано с необходимостью подчеркнуть роль пластического деформирования, в процессе которого происходит накопление повреждений и микроразрушений, подготавливающих макроскопическое разрушение.  [c.231]

Законы старения, оценивающие степень повреждения материала в функции времени, являются основой для решения задач надежности. Они позволяют прогнозировать ход процесса старения, оценивать возможные его реализации и выявлять наиболее существенные факторы, влияющие на интенсивность процесса. Типичным примером таких зависимостей являются законы износа материалов, которые на основе раскрытия физической картины взаимодействия поверхностей дают методы для расчета интенсивности процесса изнашивания или величины износа в функции времени и оценивают параметры, влияющие на ход процесса (подробнее об этом см. гл. 5). Анализируя исследования последних лет, следует отметить, что все чаще стремятся получить законы, описывающие ход процесса старения или разрушения как функцию времени.  [c.64]


Коррозия под напряжением. При этом имеет место выдержка образца на базе времени под напряжением, величина которого ниже предела длительной прочности на этой базе. Испытание заканчивается до полного разрушения образца. Цель испытаний — исследование процесса накопления повреждений, установление поведения самого покрытия, его стойкости к одновременным силовым, термическим и химическим воздействиям. Результаты этих испытаний наиболее ярко характеризуются изменением веса образца в зависимости от уровня напряжения (рис. 1). Излом кривой изменения веса объясняется, по-видимому, разрушением покрытия от внешней нагрузки.  [c.51]

Процесс циклического нагружения элемента конструкции в условиях эксплуатации сопровождается постепенным накоплением повреждений в материале до некоторого критического уровня, который может быть охарактеризован с привлечением различных методов и средств исследования. Выбор средств определяется применяемыми критериями в оценке самого предельного состояния и его фактической реализацией к рассматриваемому моменту времени, как это было рассмотрено в предыдущей главе. Даже при отсутствии в детали трещины можно с большой достоверностью утверждать, что после длительной наработки в эксплуатации последующее после проверки нагружение может вызвать быстрое зарождение и далее распространение усталостной трещины. Оценка состояния материала с накопленными в нем повреждениями и прогнозирование последующей длительности эксплуатации до появления трещины, установление периодичности контроля за состоянием детали подразумевают использование структурного анализа на базе физики металлов. Это подразумевает обязательное применение методов механики разрушения для оценки длительности роста трещины и обоснования периодичности осмотров на всех стадиях зарождения и распространения трещин. Однако многопараметрический характер внешнего воздействия на любой элемент конструкции делает неизбежным введение в рассмотрение процесса накопления повреждений в конструкционных материалах с позиций синергетики, следовательно, возникает новое представление о процессе распространения трещин. Всю совокупность затрат энергии внешнего воздействия, вызвавших разрушение элемента конструкции, интегрально характеризуют достигнутое на определенной длине трещины предельное состояние, единичная реализация процесса прироста трещины и сформированная в результате этого поверхность разрушения.  [c.79]

Длительность среднего полета вертолета Ми-6 составляет около 1,6 ч. Поэтому развитие трещин происходило в течение 160, 224 и 256 ч для наработок после последнего ремонта 875,511 и 353 ч соответственно. Представленные оценки свидетельствуют о необходимости дополнительного периодического контроля ЗК в эксплуатации в межремонтный период. Их достоверность была подтверждена следующим фактом. При исследовании процесса зарождения трещин в ЗК с минимальной наработкой после последнего ремонта было доказано, что в зоне выкрошившегося шлица при ремонте была пропущена уже имевшая место небольшая по глубине трещина. В технологии ремонта допускалась эксплуатация ЗК с удаленной частью шлица, в котором отмечено возникновение усталостного выкрашивания. Опыт эксплуатации показал, что в этом случае, если нет трещины от шлиц в тело ЗК, дальнейшая эксплуатация ЗК является безопасной, так как возникает повреждение одного из следующих шлиц без разрушения самого ЗК и без нарушения его функционирования. Применительно к ЗК с наработкой после ремонта 353 ч, короткая трещина, зародившаяся от поверхности шлиц в тело ЗК, уже имелась, и с ней оно поступило в эксплуатацию. Из сопоставления оценки длительности роста трещины (256 ч) и наработки в эксплуатации после ремонта (353 ч) очевидно, что эти величины близки. Вместе с тем имеющиеся расхождения могут быть использованы для оценки длительности задержки трещины при ее переори-  [c.692]

В работе [8] исследован процесс развития усталостных повреждений и установлено, что можно построить диаграммы условное напряжение — число циклов до разрушения 8 — Ы) для расслаивания и растрескивания смолы, а также для окончательного разделения образцов на части. Пример таких диаграмм приведен на рис. 6, откуда видно, что усталостное повреждение может возникать при напряжениях, составляющих очень малую долю статического предела прочности.  [c.343]

В условиях рассматриваемого типа нагружения проявляются особенности малоцикловой усталости, заключающиеся прежде всего, как отмечено выше, в возможности накопления в процессе циклических нагружений наряду с усталостными повреждениями и квазистатических. В указанном наиболее общем случае оценка накопления повреждений может быть выполнена в деформационной форме, что является традиционным для малоцикловой ветви кривой усталости [2—8] и обосновывается в ряде исследований также и для многоцикловой области [144, 210, 211], а расчет повреждений представляется возможным осуществить на основе деформационно-кинетических критериев разрушения.  [c.57]

В данной работе сделана попытка осветить только основные методы оценки надежности технических систем. Это потребовало обобщения результатов исследований в данной области целого ряда отечественных и зарубежных специалистов, причем был сделан упор не на теоретическую разработку отдельных вопросов, а на их практическую применимость. Особое внимание уделено рассмотрению физической природы отказов, и повреждений и изложению методов, позволяющих проводить количественную оценку различных процессов разрушения.  [c.4]

Как указывалось ранее, ири действии ударных нагрузок имеет место несколько видов разрушения, которые зависят от состава и структуры материала. Для исследования процесса разрушения проводятся испытания на удар, в ходе которых измеряется изменение по времени перемещений, нагрузок, поглощенной энергии, изучаются повреждения в экспериментальном образце и т. д. В настоящее время разработано несколько методов испытаний на удар. На рис. 6.13 изображена экспериментальная установка для испытаний на удар при вертикально падающем грузе [6.10]. На рис, 6.14 показаны испытания на маятниковом копре. Для испытаний на ударное сжатие используются стержни Гопкинсона.  [c.158]


Одновременно отечественные металловеды продолжают изучение методов повышения надежности высокопрочной стали — конструктивной с мартенсит-ным упрочнением в процессе закалки. Оно развивается в двух направлениях. К первому относятся обширные исследования влияния состояния поверхности. Установлено, что в подавляющем большинстве случаев отказов материальной части авиационной техники и других объектов наиболее ответственных областей машиностроения очаги разрушения расположены на поверхности и связаны с различными повреждениями (механическими, коррозионными, термическими и др.). Поэтому повышение надежности высокопрочных сталей может быть достигнуто не только усовершенствованием их состава и металлургическим процессом, но и улучшением состояния поверх-  [c.201]

Отмечено некоторое отличие в длительности стадий усталостного разрушения исследованных материалов. Увеличение прогиба в начале испытаний на первом участке первой стадии у образцов из сплава на основе титана и стали 30 происходит очень быстро, в течение 500—2000 циклов, длительность же второго участка первой стадии, характеризуемого уменьшением прогиба, различна. Так, максимум на диаграммах усталости для стали 30 наступает через 5—10 тысяч циклов при всех напряжениях выше предела усталости, то есть длительность первой стадии очень мала и составляет 2% от общей долговечности образцов. Длительность же первой стадии для сплава на основе титана значительно больше (14—27% от долговечности образцов). Это объясняется тем, что в стали 30 как процессы упрочнения, так и процессы разупрочнения протекают очень интенсивно, в результате чего относительно рано появляются микроскопические трещины усталости, вызывающие необратимые повреждения и снижающие усталостную прочность. Указанный вывод подтверждается известным фактом малой выносливости при перегрузках среднеуглеродистых отожженных сталей, для которых кривая повреждения (кривая Френча) проходит почти параллельно горизонтальной части кривой Велера.  [c.39]

Коррозионная усталость, особенно на начальной стадии зарождения поверхностных повреждений металла, изучается прежде всего с позиций физической химии [11, 29, 66], но по мере развития поверхностных раковин и трещин, проявляющих себя как концентраторы напряжений, вступают в силу закономерности механики разрушения. При этом характер процесса повреждений существенно зависит от химического состава и термообработки металла, типа агрессивной среды и таких факторов, как частота циклического нагружения и температура. Интенсивное изучение явления коррозионной усталости началось сравнительно недавно и в возрастающем потоке публикуемых исследований встречаются еще расхождения по отдельным конкретным вопросам.  [c.24]

Исследования критериев малоциклового разрушения при повышенных и высоких температурах ведутся в последнее время весьма интенсивно, о чем свидетельствует большое количество различных предложений, посвященных выбору физически обоснованной меры повреждаемости материала в процессе эксплуатации и разработке соответствующих кинетических зависимостей, позволяющих оценивать остаточный ресурс конструкций в связи с параметрами процессов нагружения и нагрева. Существующие опытные данные указывают на значительную сложность физических процессов, приводящих к разрушению материала при высокотемпературном циклическом нагружении. Взаимодействие стадий образования и подрастания микропор и микротрещин в процессе пластического деформирования, слияния микротрещин, образования и распространения макротрещины подчиняется сложным статистическим закономерностям и не получило до настоящего времени исчерпывающего теоретического описания. Поэтому практически все существующие модели накопления повреждений базируются, как правило, на феноменологических представлениях. При этом оценку накопленных в процессе деформирования повреждении осуществляют, используя различные скалярные и тензорные параметры [18—201 (эффект Баушингера, длина траектории пластического деформирования, изменение плотности и т. п.), являющиеся макроскопическими (механическими) характеристиками явлений, определяющих на структурном уровне накопление и перераспределение поврежденности материала.  [c.16]

Основными причинами повреждения барабанов котлов являются высокие номинальные и местные (а = 2-3,5) циклические напряжения от запусков и остановов котлов накопление циклических повреждений от термических напряжений, связанных с пульсациями тепловых потоков и регулированием мощности повышенные остаточные напряжения в зонах приварки труб наличие исходных дефектов как в основном металле, так и в сварных соединениях накопление повреждений от коррозии и деформационного старения. Хрупкое разрушение барабанов паровых котлов может происходить в процессе гидро-испытаний при напряжениях Ниже предела текучести после заварки обнаруженных трещин. Для анализа прочности барабанов котлов в эксплуатации были осуществлены обширные исследования напряжений, деформаций и температур в программных и аварийных режимах, которые выявили условия образования местных упругопластических деформаций, превышающих предельные упругие в 1,5-2 раза. При испытаниях лабораторных образцов, вырезанных из серединных слоев поврежденных барабанов котлов было обнаружено незначительное (до 10%) уменьшение характеристик механических свойств предела текучести, предела прочности и относительного сужения. Было установлено, что наличие окисных пленок существенно (до 40%) снижает сопротивление циклическому разрушению.  [c.74]

В современных технических приложениях статические или квази-статические нагружения встречаются сравнительно редко. В связи с этим расчетчик вынужден обращаться к исследованию повторных, циклических и быстро прикладываемых нагрузок. Несомненно, подавляющее большинство инженерных конструкций содержит детали, на которые в процессе эксплуатации действуют пульсирующие, или циклические, нагрузки. В результате действия таких нагрузок возникают пульсирующие, или циклические, напряжения, которые часто являются причиной усталостного разрушения. С самого начала можно отметить, что общепринятый термин усталость, введенный более века назад, с точки зрения терминологии, по-видимому, не самый удачный, поскольку многие аспекты явления значительно отличаются от биологической усталости. Например, трудно обнаружить появление каких-либо прогрессирующих изменений в свойствах материала в процессе усталости иод действием напряжений, и разрушение зачастую может происходить внезапно без заметных признаков его приближения. Кроме того, во время отдыха , когда напряжения перестают действовать, не происходит залечивания или исчезновения эффектов предварительного циклического нагружения, т. е. повреждения в процессе усталости накапливаются и, как правило, являются необратимыми.  [c.166]

Ответственность остаточных микронапряжений за процесс накопления повреждений впервые была отмечена в работе [20], где и была сформулирована гипотеза пропорциональности скорости накопления повреждений и интенсивности остаточных микронапряжений. Экспериментальное обоснование ответственности остаточных микронапряжений за разрушение в опытах на одноосную малоцикловую усталость содержится в работе [21]. Кинетическое уравнение (2.14) на основе работы остаточных микронапряжений на поле пластических деформаций (критерий работы микронапряжений) впервые было рассмотрено в работах [22, 23, 24] при теоретических исследованиях малоцикловой усталости конических оболочек при теплосменах. Сопоставление в этих работах теоретических и экспериментальных результатов показало достаточную работоспособность критерия работы микронапряжений по сравнению с другими критериями. К тому же следует отметить, что нагружение материала оболочки в месте разрушения происходит в условиях двухосного напряжённого состояния и носит весьма сложный неизотермический характер. То есть в этих работах критерий работы микронапряжений впервые был апробирован при сложном (непропорциональном) неизотермическом нагружении.  [c.35]


Выше, при определении времени до разрушения, рассматривался процесс накопления повреждений, развивающихся на фоне-деформаций ползучести. Оба эти процесса (накопление повреждений и ползучесть) являются типичными термодинамически необратимыми процессами. Вследствие этого представляется естественным при исследовании прочности вообще и длительной прочности в особенности воспользоватьсй понятиями и методами термодинамики необратимых процессов В настоящее время можно указать несколько работ этого направления [8], [311, [32], [44], [79], [80], [84], [88].  [c.207]

В силу того что анализ микромеханизмов разрушения требует исследования перераспределения напряжений между компонентами при деформировании композита и накоплении в нем повреждений, рассматриваются также некоторые вопросы микромеханики композиционных материалов (разд. 3). Далее обсуждаются вероятностные подходы к исследованию процессов разрушения и вопросы учета влияния разброса прочностных свойств компонентов и параметров структуры на кинетику процессов разрушения композиционных материалов (разд. 4).  [c.13]

Исследование процессов разрушения в технологических задачах обработки металлов давлением, как правило, ограничивается анализом напряженного и деформированного состояния в обрабатываемом материале и применением тех или иных критериев разрушения. Но такое решение проблемы оказывается явно недостаточным, когда обрабатываемый материал является существенно неоднородным, содержащим компоненты, которые в силу статистического распределения их прочностных свойств могут разрушаться уже на ранних стадиях формоизменения. В частности, как было показано, деформирование композитов может сопровождаться накоплением повреждений на микроструктурном уровне в виде разрывов отдельных волокон. В зависимости от объемных долей волокон, от прочности связи между компонентами, от скорости деформирования [179] разрушение отдельных волокон может или вызывать, или не вызывать окончательное разрушение материала.  [c.255]

Рассмотренные выше подходы по изучению стадийности процессов деформации рассматривают в основном эволюцию дислокационной структуры и не учитывают процессов накопления повреждений (например, зарождения субмикротрещин) и разрушения металлических материалов. Кроме того, поскольку основные исследования по стадийности деформации металлов выполнены на монокристаллах, в этих работах не рассматривались фазовые превращения, которые часто происходят в процессе пластической деформации метастабильных сплавов. Между тем повреждение есть сложный многостадийный процесс, зависящий как от характера внешнего воздействия, так и от исходного структурного состояния материала и изменения его во времени. Анализ этого вопроса показывает, что повреждение кристаллических твердых тел и эволюция их структурного состояния, в широком смысле слова, неотделимы и, что первое большей частью детерминированно последним [9].  [c.39]

Однако, если просто изучать все многообразие дислокационных структур, то очень трудно выявить общие закономерности накопления повреждений в процессе усталости. Важно рассмотреть эволюцию дислокационных структур при характерных (пороговых) условиях пластической деформации и проводить анализ тех пороговых дислокационных структур, которые связаны с бифуркационным состоянием отдельных объемов материала и в которых происходит неравновесный фазовый переход, связанный с образованием новой, более устойчивой фазы - микротрещины [58, 59]. В этом смысле весьма перспективно привлечь к анализу представления синергетики (области научных исследований, целью которых является выявление общих закономерностей в процессах образования, устойчивости и разрушения упорядоченных временных и пространственных структур в сложных неравновесных системах различной природы [60]). Подходы синергетики позволяют описывать сложное поведение открытых систем (а образец или конструкция, которые испытываются на усталость, являются открытыми системами), не вступая в противоречие со вторым законом термодинамики [61-69]. Синергетика оперирует с диссипативными структурами, образующимися в неравновесных условиях в результате обмена энергией (или энергии и веществом) с окружающей средой при подводе внешней энергии к материалу.  [c.85]

Приблизительно в сороковых годах начинаются интенсивные исследования сопротивления усталости деталей при переменных в процессе эксплуатации амплитудах нагрузок. В работах С. В. Серенсена (1944), Д. Н, Решетова (1945) и В. М. Бахарева (1945) для оценки долговечности м прочности при переменной во времени амплитуде напряжения анализировалась линейная гипотеза суммирования усталостных повреждений. Были предложены феноменологические трактовки процесса накопления усталостных повреждений при варьируемых амплитудах, которые основываются на анализе свойств вторичных кривых усталости при программном нагружении и отклонений их параметров от условий линейного суммирования повреждений (С. В. Серенсен, Л. А. Козлов, 1953), на использовании энергии гистерезиса, поглощаемой металлом при напряжениях, превышающих предел выносливости (Д. И. Гольцев, 1955), на анализе свойств меры повреждений и введении двух стадий усталостного разрушения (В. В. Болотин, 1959—1963).  [c.409]

Некоторые другие предположения о характере накопления повреждений. В работах [5, 17] рассмотрены модели, позволяющие описать наблюдаемое на опытах отступление от гипотезы суммирования повреждений. Некоторые формулы приведены в табл. 2. Удобный путь для уточнения и обобщения теории суммирования повреждений открывает введение двух или нескольких мер повреждения [5]. Так, разделяя усталостное разрушение на две стадии, одна из которых является инкубационной, а другая соответствует развитию макроскопической трещины, и вводя две соответствующих меры повреждения В и Во, придем к модели, приведенной в последней графе табл. 2. В таблице даны также соотношения для случая двухступенчатого режима нагружения, часто применяемого для исследования процесса усталостного повреждения. Формулы для расчета долговечности при случайном режиме изменения напряжений приведены в гл. 8.  [c.162]

В настоящее время имеется большое количество работ, посвященных анализу прочности и долговечности материалов и элементов конструкций. В ряде публикаций проблема прочности и разрушения рассматривается с феноменологических позиций— на базе концепций механики деформируемого твердого тела. К другому направлению относятся работы по развитию физики прочности и пластичности материалов, в которых анализ рузрушения проводится на атомарном и дислокационном уровнях, т. е. на микроуровне. В этих исследованиях весьма затруднительно включение в параметры, управляющие разрушением, таких основных понятий механики, как, например, тензоры деформаций и напряжений или жесткость напряженного состояния. Поэтому в последнее время интенсивное развитие получило направление, которое пытается соединить макро- и микроподходы при описании процессов повреждения и разрушения материала и формулировке критериев разрушения.  [c.3]

В работе [10] исследован также остаточный предел прочности на растяжение образцов после их частичной усталостной повреж-денности. Было обнаружено, что начало расслаивания почти не снижает прочности. Но после возникновения растрескивания смолы прочность на растяжение снижается, следуя квадратичной зависимости, аналогичной развитию растрескивания смолы. В отличие от результатов работы [3] снижение прочности на растяжение оказалось не зависящим от условий циклического (от формы цикла) нагружения. Это означает, что окончательное разрушение при усталостном испытании происходит вследствие локальной неустойчивости процесса повреждения, и это проявляется в наблюдаемой зоне очень высокой поврежденности.  [c.355]

Концепция состояния предразрушения была проверена детальным количественным анализом как развития пoщ)eждeниi так и упомянутых деформационных процессов. Из обширных данных, полученных в рамках изучения кавитационных повреждений и разрушения при ползучести меди, некоторых сплавов меди (твердых растворов) и технически важных жаропрочных сталей, здесь будут приведены результаты исследования накопления повреждений при ползучести сплава Си-2,5А1 в условиях, когда рост пор контролируется проскаль-  [c.262]

Растрескивание металла трубопроводов вследствие водородного охрупчивания зарождается на участках стали с твердой мартенситной структурой, обычно в местах концентрации остаточных напряжений, возникающих при изготовлении труб. Как правило, коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом поверхностного дефекта в вершине сварного соединения [19]. Исследования коррозионных повреждений трубопроводов, изготовленных из стали марки 17Г2С и транспортирующих газ с примесью сероводорода (до 2%), показали, что общим для всех случаев разрушения сварных соединений является зарождение трещин  [c.17]


В работе [11] исследованы процессы повреждения в композитах с матазяи из рубленой пряжи или с тканью. Задача состояла в оценке влияния деформации разрушения полиэфирной смолы на поведение композита. Авторы использовали полиэфирную смолу широкого применения, а для увеличения деформации разрушения добавляли полипропиленадипат и полипропиленмалеат в стироле. Основная смола обладала деформацией разрушения, равной 1,5%, а при добавлении 50% (весовых) указанного пластификатора ее предельная деформация увеличивалась до 60%. Это увеличение не отражалось в соответствующем увеличении деформации разрушения композитов (рис. И). Композиты при этом имели максимальную прочность на растяжение, возросшую на 15 -ь 20%, а деформация при разрушении была между 2 и 3%. Исследование композитов показало, что эта добавка пластификатора полностью исключает растрескивание смолы, но фактически не оказывает влияния на возникновение расслаивания.  [c.348]

При этом предполагается, что в зонах концентрации напряжений, где, как правило, происходят малоцикловые разрушения, накапливаются в основном усталостные повреждения в результате действия знакопеременных упругопластических деформаций. Вместе с тем в эксплуатационных условиях в результате работы конструкции на нестационарных режимах, в том числе при наличии перегрузок, возможно накопление односторонних деформаций, определяювцих степень квазистатического повреждения и влияю-ш их на достижение предельных состояний по разрушению. Для обоснования методологии учета накопления конструкцией (наряду с усталостными) квазистатических повреждений по результатам тензометрических измерений требуется решение прежде всего вопросов расшифровки показаний датчиков с целью воспроизведения истории нагруженности в максимально напряженных местах конструкции и оценки малоциклового повреждения для эксплуатационного контроля по состоянию. Малоцикловое повреждение может в общем случае оцениваться по результатам измерений, выполненных обычными тензорезисторами, но с расширенным диапазоном регистрируемых деформаций (до величин порядка нескольких процентов), характерных для малоцикловой области нагружений. Исследование [20] выполнялось в Московском инженерно-строительном институте и Институте машиноведения на базе разработанных в лаборатории автоматизации экспериментальных исследований МИСИ специальных малобазных тен-зорезисторов больших циклических деформаций. Аппаратура и методика эксперимента подробно описаны в [229]. На серийной испытательной установке УМЭ-10Т с тензометрическим измерением усилий и деформаций, а также крупномасштабным диаграммным прибором осуществлялось циклическое нагружение цилиндрических гладких образцов по заданному и, в частности, нестационарному режиму. Одновременно соответствующей автоматической аппаратурой производилась регистрация истории нагружения с помощью цепочек малобазных тензорезисторов, наклеенных на испытываемый образец. Сопоставление показаний тензорезисторов с действительной историей нагружения и деформирования образца, регистрировавшихся соответствующими системами испытательной установки УМЭ-10Т, давало возможность определить метрологические характеристики датчиков и особенности их повреждения в условиях малоциклового нагружения за пределами упругости. Наиболее существенными особенностями работы тензорезисторов в условиях малоциклового нагружения оказываются изменение коэффициента тензочувствительности при высоких уровнях исходной деформации и в процессе набора циклов нагружения, уход нуля тензорезисторов и их разрушение через определенное для каждого уровня размаха деформаций число циклов.  [c.266]

Эта книга, изданная в 1963 г. в ЧССР, — единственная в своем роде монография, освещающая современное состояние изученности микробиологической коррозии. В ней показано значение микроорганизмов как фактора повреждений и даже полного разрушения многих видов промышленного сырья и готовых изделий. Авторы правильно отмечают, что новая область науки — микробиологическая коррозия — не ограничивается исследованием причин и форм порчи материалов. Она включает всю сорокунность вопросов защиты от коррозии, отсюда ее прикладное значение. Поэтому особое внимание авторы уделили описанным в мировой литературе средствам защиты различных материалов от воздействия микроорганизмов в тропических условиях. Кай известно, биологические процессы в условиях тропического климата протекают интенсивнее. Однако основные факторы, направляющие жизнедеятельность микроорганизмов — температура и влажность, могут везде давать сочетания, благоприятные для интенсивного развития тех или иных групп микроорганизмов.  [c.5]

Растрескивание металла стальных трубопроводов от водородного охрупчивания зарождается на участках с твердой мар-тенситной структурой, обычно в местах концентрации напряжений, которые возникают при изготовлении труб на металлургических заводах. Коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано чаще всего с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения коррозионных трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом в вершине поверхностного дефекта сварного соединения [38]. Исследованиями коррозионных повреждений трубопроводов из сталей 17Г2С, транспортирующих газ с примесью сероводорода до 2 %, показано, что общим для всех случаев разрушения сварных соединений является зарождение трещин на внутренней поверхности трубопровода в зоне сплавления корневого или подварочного шва и дальнейшее их распространение по металлу шва или металлу околошовной зоны до наружной поверхности. В металле труб наблюдаются внутренние и выходящие на внут-  [c.14]

В литературе известны случаи, когда датчики, используемые для исследования усталостных процессов сами выходили из строя из-за накопления усталостных повреждений. Разрыв электрической цепи, в которую включен датчик, может быть следствием как возникновения и роста трещины в исследуемом образце, так и разрушения самого датчика. Поэтому при проведении подобных испытаний прежде всего была оценена долговечность используемых датчиков гребенчатого типа. Прочность тензорезисторов оказалась достаточно высокой. Так, при длительном испытании (5-10 циклов) ни одна нить тензорезисторов не вышла из строя, все 40 нитей датчиков работали н(ф-мально. Продолжительность испытаний на усталость с использованием тензорезисторов, как правило, была в несколько раз меньше, поэтому нет оснований предполагать, что детчики в лабораторных исследованиях будут выходить из строя из-за накопления усталостных повреждений. Кроме того, при отключении очередного датчика всегда необходимо проверять цепь этого датчика, для того чтобы подтвердить, что отключение системы произошло именно от разрыва нити датчика. Была также оценена возможность погрешности регистрации движения трещины при испытании вследствие неравномерности запаздывания разрыва нитей тензорезистора на разных стадиях ее развития. Для этого была проведена Сфия испытаний, когда после разрыва очередной нити тензорезистора испытание прекращалось, образцы разгружали и вынимали из испытательной машины. Затем их разрушали при температуре жидкого азота. Анализ изломов образцов показал, что практически запаздывание не зависит от длины развивающейся усталостной трещины и на всей длине тензорезистс а составляет не более 0,1 мм.  [c.218]

Перераспределение напряжений в материале, вызванное накоплением повреждений, оказывает существенное влияние на возможность локализации очагов разрушения или инициирования последующих микромеханизмов разрушения. Но окончательное заключение о, возможности развития процесса разрушения на том или ином структурном уровне может быть дано, как правило, лишь в вероятностном аспекте, например, с учетом случайного характера тепловых флуктуаций на субмикроструктурном уровне или с учетом статистического характера прочностных свойств компонентов. Выделение детерминистической и вероятностной частей в исследовании процессов разрушения представляется весьма эффективным при алгоритмизации и имитационном моделировании их на ЭВМ.  [c.16]

Имитационное моделирование на ЭВМ применялось в работе [109] при исследовании процессов дробления волокон композиционного материала в области концентрации напряжений, вызванной развитием макротрещины, а также в работах С.Т. Милейко, П.А. Егина и С.Х. Сулейманова при изучении механизмов разрушения и кинетики накопления повреждений при циклическом нагружении слоистых и волокнистых композитов [3, Ш], Подробнее эти подходы рассмотрены ниже (ем, гл. 5) при построении структурных моделей композитов, позво-  [c.144]

Переход от этапа накопления повреждений к развитию магистральной трещины или к макроразрушению происходит в результате взаимодействия разнообразных механизмов разрушения. Но фрактографические и микроструктурные исследования, а также анализ процессов перераспределения напряжений показывают, что для широкого круга материалов (учитьшая разнообразие методов получения и технологических режимов) одним из основных механизмов, по которому реализуется окончательное разрушение материала, является лавинный процесс последовательного разрушения волокон в некотором сечении. Выше (гл. 1, разд. 4) уже отмечались трудности, возникающие при попытках аналитического исследования процессов последовательного разрушения волокон в вероятностном аспекте, В то же время имитационное моделирование на ЭВМ открывает возможность учета всего многообразия ситуаций, возникающих при накоплении повреждений в некотором объеме композиционного материала.  [c.157]

Микромеханизмы разрушения и сопутствующие им эффекты при испытании композиционного материала на длительную прочность. Развитие разрушения исследуемых композитов на микроструктурном уровне, как правило, начинается с разрывов отдельных волокон. Следует заметить, что разрушению волокон предшествует накопление повреждений на субмикроструктурном уровне как внутри волокон, так и на границах [160, 161]. В данном случае эти эффекты непосредственно не рассматриваются и не моделируются на ЭВМ, как в работах [136, 138], но предполагается, что их действие может приводить к разупрочнению волокон и снижению прочности их связи с матрицей с течением времени. В силу разброса прочностных свойств волокон разрушение отдельных волокон в композите может происходить уже в процессе приложения нагрузки. Разрывы отдельных волокон вызывают концентрацию напряжений в локальных областях композита, и дальнейшее развитие разрушения в материале, находящемся под действием постоянной растягивающей нагрузки, в большей степени связано с процессами, развивающимися в этих дефектных областях, в частности с уменьшением несущей способности концевых участков разрушившихся волокон по мере релаксации касательных напряжений в матрице или с развитием процессов отслоения разрушившихся волокон от матрицы. Процессы релаксации напряжений в дефектных местах и процессы отслоения разрушившихся волокон от матрицы могут быть алгоритмизированы на основании проведенных исследований процессов перераспределения напряжений (см. гл. 2, разд, 7) и сопутствующих им динамических эффектов (см. гл. 3, разд. 5).  [c.224]


Смотреть страницы где упоминается термин Исследование процессов повреждения и разрушения : [c.35]    [c.4]    [c.70]    [c.58]    [c.186]   
Машиностроение Энциклопедия Т IV-3 (1998) -- [ c.68 ]



ПОИСК



Повреждени

Повреждение

Процесс разрушения



© 2025 Mash-xxl.info Реклама на сайте