Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трещина Процесс зарождения

Под разрушением понимают процесс зарождения и развития в металле трещин, приводящий к разделению его на части. Разрушение происходит или в результате развития нескольких трещин или слияния рядом расположенных трещин в одну магистральную треп ину, по которой происходит полное разрушение.  [c.50]

Таким образом, высокое давление а затормаживает или полностью подавляет процесс зарождения трещин разрушения при деформации.  [c.437]

Испытания плоских образцов, упрочненных объемно, и с покрытиями проводятся на комбинированных экспериментальных установках, позволяющих определять предел выносливости, строить кривые малоцикловой усталости, наблюдать за процессом зарождения трещины в покрытии от заранее созданного концентратора напряжения, определять кинетику распространения трещины в покрытии и в основном металле.  [c.34]


После достижения критической температуры хрупкости дальнейшее увеличение температуры сопровождается увеличением работы пластической деформации, которая одновременно реализуется в процессе зарождения и роста трещины. Вязко-хрупкий переход в разрушении сопровождается сменой доминирующего механизма роста трещин.  [c.82]

Для области развитой пластической деформации концепция квазиупругого разрушения материала не применима. С первого цикла нагружения образца или элемента конструкции задается определенный уровень пластической деформации, так что процесс зарождения и роста трещины протекает в условиях, когда необходимо использовать критерии упруго-пластического разрушения [85-95].  [c.244]

Для получения общей картины процесса зарождения и роста трещин был проведен анализ излома двух лопаток с максимальной наработкой  [c.618]

Длительность среднего полета вертолета Ми-6 составляет около 1,6 ч. Поэтому развитие трещин происходило в течение 160, 224 и 256 ч для наработок после последнего ремонта 875,511 и 353 ч соответственно. Представленные оценки свидетельствуют о необходимости дополнительного периодического контроля ЗК в эксплуатации в межремонтный период. Их достоверность была подтверждена следующим фактом. При исследовании процесса зарождения трещин в ЗК с минимальной наработкой после последнего ремонта было доказано, что в зоне выкрошившегося шлица при ремонте была пропущена уже имевшая место небольшая по глубине трещина. В технологии ремонта допускалась эксплуатация ЗК с удаленной частью шлица, в котором отмечено возникновение усталостного выкрашивания. Опыт эксплуатации показал, что в этом случае, если нет трещины от шлиц в тело ЗК, дальнейшая эксплуатация ЗК является безопасной, так как возникает повреждение одного из следующих шлиц без разрушения самого ЗК и без нарушения его функционирования. Применительно к ЗК с наработкой после ремонта 353 ч, короткая трещина, зародившаяся от поверхности шлиц в тело ЗК, уже имелась, и с ней оно поступило в эксплуатацию. Из сопоставления оценки длительности роста трещины (256 ч) и наработки в эксплуатации после ремонта (353 ч) очевидно, что эти величины близки. Вместе с тем имеющиеся расхождения могут быть использованы для оценки длительности задержки трещины при ее переори-  [c.692]

Допустимый срок эксплуатации элементов энергооборудования, например трубопроводов, определяет степень поврежден-ности. Процесс зарождения и накопления повреждений начинается с ранних стадий ползучести. Однако на затухающей стадии появляются только единичные дефекты, которые не представляют опасности для эксплуатации. Заметное усиление процесса зарождения и развития повреждений происходит на ускоренной стадии ползучести, при этом закономерности роста повреждений определяются индивидуальными особенностями материала в одних случаях происходит постепенное накопление дефектов (см., например, рис. 3.22, кривая 2), в других заметные очаги повреждений появляются при исчерпании ресурса на 80—90% и с очень интенсивным развитием повреждений вплоть до образования магистральных трещин (рис. 3.22, кривая 7), в этом случае любыми методами трудно установить предельно допустимую поврежденность, не представляющую опасность и для дальнейшей эксплуатации.  [c.97]


Количественные различия в форме петель гистерезиса отражаются в величине параметра (рис. 5.18d). Следовательно, поскольку доля упругой энергии, запасенной за 1 цикл, самая маленькая в наноструктурных образцах, подвергнутых кратковременному отжигу при 473 К, можно утверждать, что этот материал обладает самыми лучшими усталостными свойствами среди исследованных состояний. Тем не менее, при анализе усталостного поведения мы должны помнить, что, как только произойдет зарождение трещины, именно она будет определять распределение напряжений. В результате при анализе усталостного поведения следует принимать во внимание процессы зарождения и распространения трещин.  [c.220]

В поверхностно-упрочненном материале при усталостном разрушении на воздухе часто наблюдается образование подповерхностных очагов. При испытании упрочненных материалов в коррозионной среде в общем случае не наблюдается снижения долговечности по отношению к сухой усталости. Объясняют это тем, что в начальный момент разрушения, когда фактор среды сказывается наиболее сильно, параллельно идут два процесса зарождение и рост трещин при чисто усталостном механизме с образованием подповерхностного очага и зарождение на поверхности трещин коррозионного происхождения [76]. Совместное участие среды и механического фактора наблюдается лишь после соединения этих трещин, т. е. в такой стадии повреждения материала, когда основное влияние на развитие трещины оказывает механический фактор.  [c.131]

При проведении усталостных микроструктурных исследований металлических материалов методами тепловой микроскопии весьма важно осуществлять количественную оценку процесса зарождения и распространения усталостной трещины. Пр этом чаще всего используют или визуальное наблюдение за распространением магистральной трещины с измерением ее длины с помощью-микроскопа и микрометрической насадки АМ9-2, или методы измерения электрического потенциала в зоне распространения трещины. Автоматические анализаторы изображения позволяют получить данные о длине трещины и площади пластической деформации в ее вершине.  [c.286]

ПРОЦЕССА ЗАРОЖДЕНИЯ И РАСПРОСТРАНЕНИЯ ТРЕЩИН  [c.271]

На первом этапе усталостные испытания проводили при постоянном уровне напряжения. Экспериментальные результаты позволили получить количественные соотношения, характеризующие процессы зарождения и развития трещины.  [c.271]

Эффект сочетания различных уровней напряжения состоит в ускорении или запаздывании зарождения трещины. Если продолжительность и уровень перегрузки вызывают только упрочнение материала в вершине концентратора, то происходит запаздывание процесса зарождения трещины. Если такое нагружение вызывает зарождение микротрещин в вершине концентратора, то процесс зарождения трещины ускоряется.  [c.273]

Для высоких значений коэффициента концентрации процесс зарождения трещины является ускоренным независимо от продолжительности перегрузки.  [c.273]

Для значений коэффициента концентрации а 3 эффект начальной перегрузки различен в зависимости от ее длительности (рис. 4). Перегрузки, составляющие 1 % от общего числа циклов, вызывают упрочнение, что ведет к увеличению примерно на один порядок числа циклов iV , при котором появляется трещина. Перегрузка длительностью 10 % от общего числа циклов значительно ускоряет процесс зарождения трещины.  [c.273]

Установленно, что роль агрессивной среды в процессе зарождения и развития трещин коррозии под механическим напряжением сводится к следующим факторам  [c.9]

Коррозия с кислородной деполяризацией наблюдается при контакте стальных конструкций с водой, нейтральными растворами солей, а также в атмосфере. Коррозия с кислородной деполяризацией широко распространена и в определенной степени обусловливает процесс зарождения и развития трещин при коррозионной усталости и растрескивании. При подкислении среды, т. е. при снижении pH, процесс идет частично уже с водородной деполяризацией в достаточно кислых средах коррозия протекает практически полностью в условиях водородной деполяризации  [c.33]


Все приведенные концепции освещают лишь отдельные стороны процесса зарождения и докритического развития коррозионно-механических трещин, не охватывая всей сложности процессов и явлений, обусловливающих разупрочняющее воздействие активных сред.  [c.58]

При горячей деформации в металле одновременно проходят два процесса зарождение микропор, пластических разрыхлений и микротрещин, которые при достижении критических значений приводят к образованию микротрещин и разрушению, а также залечивание пор и трещин, восстановление запаса пластичности.  [c.14]

В теории зарождения и роста трещины используются два критерия силовой и энергетический. Согласно первому локальное напряжение в месте зарождения микротрещины или в вершине растущей трещины должно превосходить напряжение теоретической прочности. По энергетическому критерию процесс зарождения трещины должен быть энергетически выгодным.  [c.15]

Общим для всех рассмотренных моделей является то, что процесс зарождения трещин является следствием концентрации упругой энергии при образовании скопления дислокаций и последующем их сближении. Трещина возникает при достижении максимальной концентрации упругой энергии в локальном объеме металла, чему соответствует достижение критической плотности дислокаций.  [c.39]

Среда имеет особенно большое влияние на процесс зарождения и рост субкритических трещин в высокопрочных алюминиевых сплавах. Измеренные до настоящего времени скорости роста тре-  [c.188]

В работах [72, 197] описаны те сложные моменты, которые могут преобладать в процессе зарождения и распространения трещин КР. Если рассматривается только вершина развивающейся трещины, то обычно неизвестными являются следующие факторы  [c.388]

Для П., испытывающих преобладающие усилия растяжения, а также в ряде др. случаев статич, и динамич, нагружения может иметь место процесс зарождения и развития трещин. Это особенно характерно для П., подвергающихся действию нагрузок, переменных во времени. Соответствующий процесс т. н. усталостного разрушения определяется такими факторами, как порядок следования нагрузок, длительность нагружения  [c.626]

Необходимо отметить, что использование данных о трещино-стойкости материала при определении а<г и шт возможно, если разрушение образца с трещиной так же, как и цилиндрического образца с кольцевым надрезом, контролируется процессом зарождения микротрещин. Как будет показано в подразделе 4.2.2, для сталей средней и высокой прочности при испытании на тре-щиностойкость это требование выполняется автоматически.  [c.99]

Рассмотрим, в каких случаях зарождение микронесплошно-сти на включениях приводит к образованию острой микротрещины, а в каких —поры. При зарождении микротреш,ины на включении, для того чтобы инициировать хрупкое разрушение матрицы, микротрещине нужно преодолеть межфазную границу между включением и матрицей, т. е. некоторый эффективный барьер, мерой которого является эффективная поверхностная энергия межфазной границы. В случае непрочных включений или непрочных связей матрица — включение (например, крупные включения сульфидов марганца MnS или глинозема АЬОз) зарождение микротрещины будет происходить при небольших пластических деформациях и малых скоплениях дислокаций у включений [см. уравнение (2.7)]. Движущей силой прорастания микротрещины по включению или по межфазной границе в основном является энергоемкость дислокационного скопления, так как вклад внешних напряжений при малой длине зародышевой трещины невелик [121]. Процесс зарождения микротрещины происходит за счет свала дислокаций в образующуюся несплошность. Поскольку в данном случае энергоемкость дислокационного скопления мала, то вполне вероятно, что зародышевая трещина не сможет преодолеть межфазную границу, притупится и превратится в пору.  [c.110]

На начальном этапе своего развития описание всех процессов зарождения и развития трещин осуществлялось таким образом, как если бы трещины были прямыми отрезками и линиями. Такие трещины можно описывать асимптотическими уравнениями. Это была линейная механика разрушения. В ней рассматривалось исключительно хрупкое разрушение, происходящее при росте трещины без заметных пластических деформаций материала. Это послужило первым приближением к описанию ргзрушения.  [c.19]

Впоследствии было выяснено, что истиннс хрупкое разрушение может происходить лишь в очень немногих случаях.. В основном же, при росте трещины перед ее кончиком всегда возникает, так называемая, пластическая зона. По своей структуре и свойствам пластическгл зона напоминает металл в состоянии, близком к расплавленному. Изменение структуры материала в пределах пластической зоны -называется пластической деформацией. При наличии пластической деформации происходит иязкое разрушение. Оно наблюдается в пластичных материалах, когда пластическая деформация материала достигает такой величины, что он разделяется на две части. Разрушение происходит в результате процесса зарождения, слияния, и распространения внутренних пор. Подробно механизмы протекания пластической деформации будут описаны в главе 4.  [c.19]

Па начальном этапе своего развития описание всех процессов зарождения и развития 1рещин осуществлялось таким образом, как если бы трещины были прямыми отрезками и линиями. Такие трещины можно описывать  [c.74]

Применительно к процессу накопления усталостных повреждений в металле в качестве координаты, характеризующей эволюцию его состояния, могут быть использованы разные параметры. До момента возникновения трещины принято рассматривать динамику увеличения плотности дислокаций до критического уровня, после чего происходит появление трещины [104-105, 108, 109]. Поэтому вполне естественно рассматривать в качестве параметра q, характеризующего эволюцию металла в процессе зарождения трещины, плотность дислокаций. Скорость изменения плотности дислокаций определяется многими параметрами структуры металла. Возникает зависимость, или реализуется иринции подчинения, когда при эволюции многих параметров во времени удается охарактеризовать эволюцию системы через один параметр — плотность дислокаций.  [c.124]


По мере перехода от зоны ЗК с максимальным растягивающим напряжением к ее центра.яьному отверстию, где она располагается на валу редуктора, напряжения от контакта зубьев уменьшаются из-за их перераспределения между соседними зубьями и ограниченным перемещением или возможной деформацией самих зубьев. При этом динамические напряжения от вращения ЗК возрастают и нарастает максимальный уровень коэффициента интенсивности напряжения, если рассматриваемая траектория изменения напряжений вдоль радиуса колеса совпадает с траекторией возрастающей длины усталостной трещины. По мере продвижения усталостной трещины от периферии ЗК к ее оси происходит нарастание асимметрии цикла нагружения при уменьшении амплитуды переменных напряжений. Возникает естественный вопрос о длительности процесса зарождения и последующего роста трещины на основе анализа вида повреждающего цикла нафужепия, который определяет продвижение трещины в ЗК за один цикл запуска и остановки двигателя.  [c.680]

Сигналы АЭ в полной мере отражают последовательность процессов зарождения и распространения усталостной трещины. Первый перегиб на акустограмме связан с началом магистрального развития усталостной трещины, что хорошо согласуется с результатами фрактографического анализа. Несколько опережающий подъем уровня сигналов АЭ объясняется возникновением множества очагов около распространенного на поверхности дефекта материала. Только некоторые из них получили дальнейшее развитие. Следует указать на некоторое изменение в характере накопления сигналов АЭ уже в процессе распространения трещины, что отражается временным снижением возрастания шага усталостных бороздок. Эта ситуация отражает особенности проведения испытаний --в указанный временной период имело место снижение уровня внутреннего давления, которое в последующем было восстановлено. Это было связано с течью в патрубке, который был после временной остановки испытаний заменен, и далее поддерживался постоянный уровень внутреннего давления вплоть до течи самого гидроцилиндра. Это отражается в закономерном увеличении шага усталостных бороздок в направлении роста трещины, а также в закономерном возрастании сигналов АЭ.  [c.759]

Обычно физический процесс разрушения можно разделить на три основные стадии, а именно (1) образование трещины, (2) ква-зистатический рост трещины и (3) динамическое распространение трещины. Из всех этих трех стадий разрушения наиболее сложен процесс зарождения трещины обычно упоминаются такие параметры, как зернистая структура для кристаллических материалов, скопление дислокаций, локальная молекулярная конфигурация для полимеров и др. Механический смысл значения этих параметров находится вне поля нашего рассмотрения.  [c.214]

В лаборатории высокотемпературной металлографии Института машиноведения впервые были сделаны попытки применить анализаторы изображения для изучения деформационной структуры образцов металлических материалов после их испытания в установках для тепловой микроскопии. Разработанные при этом методики позволяют производить количественный анализ накопления усталостных повреждений (подсчет числа линий скольжения и их площади), изучение процессов зарождения и развития усталостной трещины (измерение длины трещины и площади пластической зоны в ее вершине), измерение величины диагонали и расстояния между отпечатками ми кротвердости [76].  [c.284]

При оценке интенсивности износа важно знать, какой процесс — зарождение трещин или их распространение—определяет скорость образования частиц износа. Б металлах, испытанных в [149] (алюминиевые сплавы 7075-Т6 и 2024-ТЗ), процессом, контролирующим скорость износа, является скорость раснространения трещин, так как количество циклов, необходимое для их зарождения, невелико (3—10). В очень твердых металлах, в которых большие пластические деформации не могут иметь места, процессом, определяющим скорость износа, может быть процесс зарождения трещин [143].  [c.95]

Цель настоящих исследований — определение и экспериментальная проверка критериев процесса зарождения и кинетики развития трещин, а также моделирование этих процессов на ЭВМ. Исходными параметрами для моделирования являются уровень нап-рянгений, коэффициент концентрации и продолжительность начальных перегрузок.  [c.271]

Значения постоянных am для исследуемой стали отличаются от предлагаемых Такашимой [3] значений для подобных материалов. Проведенные экспериментальные исследования на образцах при ступенчато-переменном нагружении [4] выявили влияние начальных перегрузок на процессы зарождения и развития трещины (рис. 3).  [c.273]

Все это не означает, что процесс зарождения и развития усталостной трещины протекает идентично на обычной и высокой частоте циклического нагружения. Имеются экспериментальные доказательства того, что на микроструктуриом уровне существуют отличия и в процессе накопления усталостных повреждений и в строении усталостных изломов (на работы такого плана даны ссылки в [2]). В ряде исследований, однако, показано, что рассматриваемые различия для некоторых материалов незначительны, а для многих материалов — не столь существенны, чтобы не было оснований считать оправданным подход, предполагающий прямое количественное сопоставление характеристик усталости, полученных на обычных  [c.332]

О предсказании развития усталостного повреждения на основе моделирования процесса зарождения и распространения трещин / Аргириаде И., Шульц Т., Сафта В.— В кн. Механическая усталость металлов Материалы VI Междунар. коллоквиума. Киев Наук, думка, 1983, с. 271—278.  [c.432]

Использование надежных конструкторско-проверочных методов требует знания условий зарождения и развития уста.лостных трещин в реальном элементе конструкции. При моделировании на ЭВМ процесса зарождения и развития трещины проведены экспериментальные исследования на образцах, с целью оценки влияния основных факторов. По экспериментальным результатам установлена соответствующая математическая модель и определены постоянные материалы. С помощью установленной модели, моя но моделировать процесс усталостного повреждения в простых деталях при одноосном нагружении.  [c.432]

Разрушение твердьгх тел рассматривается как процесс зарождения и развития в них трещин.  [c.6]

Процессы зарождения и развития трещин под механическим напряжением во. Многом зависят от сцтешя и свойств поверхностных пленок на металле, от особсн гостей кристаллической решетки металла и от наличия дефектов.  [c.12]

Процесс зарождения и развития трещин коррозионной усталости также можно разделить на несколько этапов. Этап I, как и при растрескивании, - инкубационный. На этом этапе вследствие деформационного выхода на поверхность дислокаций и образования полос скольжения на металле формируются анодные зоны локальной коррозии. Роль среды, по-видимому, сводится к адсорбционному облегчению (ускорению) выхода полос скольжения на поверхность металла, т. е. в определешой степени проявляется эффект Ребиндера. После формирования на металле стойких полос скольжения с более отрицательным электродным потенциалом, чем потенциал остальных участков поверхности [12], начинается локальная коррозия по месту полос скольжения, т. е. реализуется П этап развития трещин — их коррозионное зарождение.  [c.95]


Таким образом, в отдельности или в комбинации, различные электрохимические факторы, способные воздействовать на процессы зарождения и заострения трещин, могут влиять и на скорость КР. Это справедливо даже в рассматриваемом здесь случае, когда в разрушении определенную роль играет водород. Кроме того., если преимущественное разрушение материала происходит в местах выделения второй фазы или связано с другими микрострук-турными элементами, то путь трещины может определяться расположением центров зарождения или повторного заострения трещин. Во многих системах сплавов особенно важным является присутствие хлор-ионов [2, 66, 186, 241]. Хорошо известным примером являются полученные Уильямсом и Экелем результаты для аустенитных нержавеющих сталей (рис. 45), указывающие на сложный характер взаимодействия кислорода и хлора.  [c.122]

Механизм зарождения усталостных трещин зависит от уровня циклических нагрузок. При больших циклических деформациях на поверхности металла образуются широкие полосы скольжения, охватывающие несколько сотен межплоскост-ных расстояний. Увеличение числа циклов нагружения приводит к увеличению количества таких полос. При низких амплитудах циклических нагрузок возникают тонкие короткие следы пластической деформации, близко расположенные между собой. С увеличением длительности нагружения новые полосы почти не возникают, а происходит интенсификация пластической деформации по уже существующим следам сдвигов. Устойчивость фубых полос скольжения обусловлена нарушением сплошности металла в виде субмикротрещин и пор, которые при дальнейшем деформировании перерастают в микротрещины. При этом важное значение имеет поперечное скольжение, инициирующее процесс зарождения усталостной трещины.  [c.77]

Строение усталостных изломов зависит [15, 16] в основном от нагружения в процессе зарождения и развития усталостной трещины, от сопротивления детали, определяемого ее геометрической формой, свойствами -материала д состоянием ио-вехно Сти, от внешней среды (температуры, коррозионных воздействий.и ир.).  [c.14]


Смотреть страницы где упоминается термин Трещина Процесс зарождения : [c.75]    [c.436]    [c.57]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.13 ]



ПОИСК



Аргириаде А., Шульц ТСафта В. О предсказании развития усталостного повреждения на основе моделирования процесса зарождения и распространения трещин

Пор зарождение

Трещина зарождение

Экспериментальное исследование поверхностного диффузионного легирования бором и хромом образцов из стали 45 на процессы зарождения, развития и торможения усталостных трещин



© 2025 Mash-xxl.info Реклама на сайте