Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Управляемость поперечная

При большой стреловидности поперечная статическая устойчивость может оказаться чрезмерно большой, затрудняющей управление по крену. Для обеспечения устойчивости, при которой достигается необходимая управляемость по крену, стреловидное крыло выполняется по схеме обратная 1/-образность .  [c.69]

При использовании стреловидного крыла или оперения необходимо учитывать некоторые особенности их обтекания, оказывающие отрицательное воздействие на статическую поперечную устойчивость и управляемость  [c.69]


Управляемость во второй половине разбега. На самолете с велосипедным шасси подкрыльные опоры (ноги) во второй половине разбега не касаются земли, поэтому самолет при некоторой скорости разбега имеет достаточно хорошую поперечную управляемость, что позволяет при разбеге с боковым ветром с помощью элеронов устранять крен и создавать равномерное распределение нагрузки по правым и левым колесам передней и задней тележек.  [c.23]

После отрыва колес главных ног шасси сразу исчезает действовавший на пикирование момент от сил трения, в результате чего самолет проявляет тенденцию к кабрированию и, если несвоевременно парировать его, самолет может выйти на закритические углы атаки с последующим сваливанием на крыло. Далее после отрыва колес главных ног шасси появляется достаточная поперечная управляемость.  [c.24]

Ухудшение поперечной управляемости из-за снижения эффективности элеронов. На больших приборных скоростях уменьшение эффективности элеронов связано с упругими деформациями крыла, а при больших числах М полета —с влиянием скачка уплотнения на распределение давления по хорде крыла. На дозвуковых самолетах ухудшаются также характеристики маневренности с увеличением высоты полета.  [c.57]

Под устойчивостью мотоцикла понимается способность сопротивляться действию сил, стремящихся опрокинуть или изменить направление его движения. Устойчивость мотоцикла связана с его управляемостью, то есть способностью сохранять заданное направ-ление движения и изменять его по желанию водителя. Различают продольную и поперечную устойчивость.  [c.94]

Управляемость самолета, так же как и устойчивость, делится на продольную и боковую. Последняя, в свою очередь, делится на поперечную и путевую.  [c.185]

Колебания кузова в поперечной плоскости, характеризующиеся угловым перемещением Р вокруг продольной оси, влияют в основном на управляемость и устойчивость автомобиля при действии поперечных сил. Горизонтальные поперечные колебания кузова, а также горизонтальные угловые колебания, обусловлены боковой упругостью шин. Эти колебания могут влиять на управляемость и устойчивость автомобиля.  [c.457]

Рассмотрим теперь силы и моменты, действующие на втулку несущего винта, с учетом влияния махового движения. Ввиду того что реакции втулки нужны в основном для исследования устойчивости и управляемости вертолета (гл. 15), нас будут интересовать главным образом низкочастотные реакции. Сначала рассмотрим несущий винт на режиме висения, для которого анализ более прост не только ввиду постоянства коэффициентов уравнений, но и вследствие полного разделения вертикальных и продольно-поперечных движений благодаря осевой симметрии обтекания.  [c.576]


Продольная и поперечная скорости вертолета на режиме висе-ния изменяются путем создания моментов по тангажу и крену относительно центра масс вертолета, что представляет собой более трудную задачу. Летчик, воздействуя на рычаги управления, непосредственно изменяет углы тангажа или крена, в результате чего возникают продольная или поперечная сила, а затем и желаемое изменение скорости вертолета. Между силами и моментами, порождаемыми управляющими воздействиями, обычно имеется существенная взаимосвязь, так что любое управляющее воздействие для создания нужного момента требует некоторых компенсирующих воздействий по другим осям. Вертолет без системы автоматического повышения устойчивости не обладает ни статической, ни динамической устойчивостью, особенно на режиме висения. Поэтому сам летчик должен осуществлять управляющие обратные связи для стабилизации вертолета, что требует от него постоянного внимания. Использование автоматических систем для улучшения характеристик устойчивости и управляемости вертолета всегда желательно, а для ряда его применений — существенно важно, но такие системы увеличивают стоимость и усложняют конструкцию вертолета.  [c.700]

Рулевой винт сложен по конструкции и работает в сложных условиях. При большой поперечной скорости или угловой скорости рыскания он может попадать в режим вихревого кольца. Он часто работает в возмущенном потоке от несущего винта и испытывает аэродинамическое влияние фюзеляжа и вертикального оперения. Эффективность управления по курсу и демпфирование рыскания посредством рулевого винта сильно зависят от указанных факторов. Тем не менее рулевой винт является эффективным средством уравновешивания крутящего момента несущего винта и обеспечения путевой устойчивости и управляемости одновинтового вертолета.  [c.716]

Бесшарнирные несущие винты. Рассмотрим несущий винт с относом ГШ или бесшарнирный винт. В обоих случаях собственная частота движения лопасти в плоскости взмаха будет больше частоты вращения винта (v > 1). Основным следствием этого будет момент на втулке, связанный с наклоном плоскости концов лопастей, что сильно увеличивает способность несущего винта создавать моменты относительно центра масс вертолета. При этом также увеличивается взаимосвязь продольного и поперечного движений, но здесь рассматривается только продольное движение. Относ ГШ на шарнирном винте не изменяет коренным образом характер динамики вертолета, хотя с появлением дополнительных моментов на втулке происходит существенное улучшение характеристик управляемости.  [c.727]

В работе [М.121] были исследованы характеристики управляемости на режиме висения и сделан вывод о том, что вертолет имеет низкое демпфирование по тангажу и крену, высокую чувствительность управления и нейтральную статическую устойчивость по углу атаки (разд. 15.3.4.5). Было найдено, что при шарнирном несущем винте для парирования неустойчивых колебаний лучше иметь низкую эффективность управления. В работе [М. 122] установлено, что неустойчивая колебательная составляющая движения вертолета имеет достаточно длинный период, позволяющий летчику ее парировать, в то же время этот период слишком короток для того, чтобы изменять реакцию вертолета на управляющее воздействие. Низкое демпфирование обусловливает заброс после управляющего воздействия. Там же обнаружено существенное поперечное движение вертолета при отклонении продольного управления.  [c.734]

В работе [R.30] исследовались характеристики управляемости вертолета и установлена высокая чувствительность поперечного управления на режиме висения (угловая скорость крена при отклонении поперечного управления), которая может вызвать забросы при управлении или даже короткопериодическую раскачку вертолета летчиком. Было обнаружено, что усилия на ручке управления при выполнении маневров в продольном и поперечном направлениях могут оказаться неприемлемыми из-за неустойчивого или нулевого градиента усилий, требуемых для выдерживания углов крена или тангажа, и взаимосвязи продольных и поперечных усилий. Устойчивость по частоте вращения несущего винта обусловливает чувствительность вертолета к порывам ветра и как следствие снос относительно земли на висении. Косвенная природа управления поступательной скоростью создает впечатление запаздывания в управлении, что нежелательно. В работе [R.30] предложено также увеличить демпфирование по крену для уменьшения чув-  [c.734]


Двухвинтовой вертолет поперечной схемы имеет поперечную симметрию, поэтому его симметричные и антисимметричные движения на висении ив полете вперед полностью изолированы. На режиме висения его динамика в основном такая же, как и у вертолета продольной схемы, если поменять местами продольную и поперечную оси. Симметричные движения (продольное и вертикальное) для этой схемы соответствуют движениям одновинтового вертолета. Поперечное движение вертолета поперечной схемы соответствует продольному движению вертолета продольной схемы движения рыскания у них одинаковы. Перемена осей сильно влияет на характеристики управляемости, поскольку требования управляемости различны для продольного и поперечного движений.  [c.740]

Рассмотрим характеристики управляемости вертолета при полете вперед. Вследствие поступательной скорости появляются новые силы, действующие на вертолет центробежные, возникающие при повороте вектора скорости вертолета относительно связанной системы координат аэродинамические, воздействующие на фюзеляж и хвостовое оперение силы на несущем винте, пропорциональные характеристике режима. В результате характеристики управляемости вертолета при полете вперед и на режиме висения существенно различны. При полете вперед вертикальное и продольно-поперечное движения связаны через силы на несущем винте и ускорения фюзеляжа. Тем не менее будем вновь предполагать возможным раздельный анализ продольного движения (продольная скорость, угол тангажа и вертикальная скорость) и бокового движения (поперечная скорость, угол крена и угловая скорость рыскания). Такой подход дает удовлетворительное описание динамики вертолета, хотя на самом деле все шесть степеней свободы взаимозависимы.  [c.747]

В работе [R.30] была исследована динамика продольного движения вертолета без стабилизатора и установлено, что основные проблемы управляемости при полете вперед связаны с неустойчивостью по углу атаки и усилиями на ручке при выполнении маневров. Неустойчивость по углу атаки приводила к неприемлемой реакции по нормальному ускорению при отклонении ручки на себя . Выяснился неустойчивый характер изменения нормального ускорения и зафиксированы нежелательные усилия на ручке при выполнении продольных и поперечных маневров на режиме висения. При полете вперед обнаружилось сильное ухудшение устойчивости длиннопериодических колебаний из-за неустойчивости по углу атаки, которое возрастало с увеличением скорости. Для обеспечения устойчивости по углу атаки при полете вперед было предложено применить стабилизатор.  [c.765]

Для улучшения боковой управляемости вертолета продольной схемы при полете вперед, согласно работе [А.24], необходимо снизить устойчивость по углу скольжения это же увеличивает устойчивость боковых колебаний. Указанного снижения можно достигнуть установкой на вертолете крыла, что одновременно улучшает управляемость по крену, или применением упругой крутки лопасти, так как момент кручения вызывает изменение углов установки лопасти с частотой вращения винта и амплитудой, пропорциональной изменению поперечной скорости несу-  [c.772]

Таким образом, система управления с обратной связью по моменту на втулке уменьшает прямую реакцию несущего винта на отклонение управления, движения вала и порывы ветра. Парирование влияния порывов ветра и в общем уменьшение устой-чивости по скорости желательны. При полете вперед также уменьшается неустойчивость несущего винта по углу атаки, что существенно улучшает продольную управляемость вертолета. Реакция на непосредственное изменение циклического шага уменьшена, но винтом можно управлять, прикладывая моменты к гироскопу. Обратная связь по моменту на втулке уменьшает демпфирование угловых перемещений несущего винта, но она также уменьшает реакцию на угловую скорость поворота вала, которая связывает продольное и поперечное движения. При наличии демпфирования во вращающейся системе координат гироскоп создает обратную связь по угловым скоростям тангажа и крена, заменяющую демпфирование несущего винта. Характеристики винта с обратной связью по моменту на втулке подобны характеристикам бесшарнирного винта. Обратная связь уменьшает реакцию винта на внешние возмущения и сами силы на несущем винте, обусловленные движением вертолета (а также устойчивость по скорости и неустойчивость по углу атаки), но обеспечивает демпфирование угловых перемещений, заменяющее демпфирование от несущего винта. Если обратная связь по моментам реализуется на бесшарнирном винте, то основным дополнительным соображением является выбор угла опережения управления в контуре обратной связи. Угол должен быть таким, чтобы продольное и поперечное движения вертолета и реакция на отклонение управления не были связанными. При большом коэффициенте усиления, желательном для улучшения характеристик системы, может оказаться недостаточным учет только низкочастотных (т. е. статических) реакций винта и гироскопа. Более того, при высоком коэффициенте усиления  [c.781]

Работа [С. 109] была посвящена анализу летных испытаний вертолета в условиях ППП. Установлено, что требования к характеристикам управляемости для ПВП подходят и к полету по приборам при скорости полета выше экономической, хотя при этом приборам необходимо уделять постоянное и пристальное внимание. На малых скоростях полета и при выполнении маневров, требующих точного пилотирования, возникают трудности с поперечным и путевым управлением, что делает полет по приборам возможным в течение лишь очень короткого времени. В случае полета по приборам обязательно наличие трим-мерного устройства для снятия усилий с ручки управления, поскольку неприемлемы даже небольшие несбалансированные усилия.  [c.789]


Примером конструктивного уменьшения вибраций могут быть изменения конструкции узла соединения заднего лонжерона, поперечной балки и наружного нижнего обвязочного бруса автомобиля с кузовом седан, приведенного на рис. 5.21. Другие способы снижения тряски и рывков связаны с элементами крепления подвески и направлены на достижение точно регулируемой жесткости. Для применения такой регулировки требуется тщательная экспериментальная проработка, так как введение гибких резиновых втулок может отразиться на управляемости автомобиля. На рис. 5.22, а показано конструктивное решение, предусматривающее введение шарового шарнира из трехслойной резины с резко возрастающей жесткостью на конце ограничителя хода независимой передней подвески Макферсона. После первоначальной деформации резиновых лепешек нагруженные с боков проволочные зажимы усиливают жесткость ограничителя хода по мере его сжатия. Другим средством получения регулируемой жесткости может быть конструкция крепления шарнира нижнего рычага, показанная на рис. 5.22, б. На рис. 5.22, в показана конструкция серьги задней рессоры с резинометаллической втулкой.  [c.138]

Боковая устойчивость и управляемость самолета в прямолинейном полете обеспечивают сохранение и восстановление режима этого полета за счет собственных свойств самолета и действий летчика при нарушениях поперечного и путевого равновесия. Боковая устойчивость и управляемость зависят от характеристик статической путевой и поперечной устойчивости, а также от демпфирования рысканья и крена.  [c.320]

Поперечная управляемость в криволинейном полете  [c.336]

При поперечном вращении возникает демпфирующий момент (рис. 11.13), который должен быть уравновешен рулевым моментом крена от элеронов. Чем выше угловая скорость накренения сох, тем больше и потребное отклонение элеронов. Для оценки поперечной управляемости можно использовать такие показатели расход элеронов на единицу угловой скорости крена 8 и расход усилий на единицу угловой скорости крена.  [c.336]

Все сказанное справедливо лишь без учета деформаций крыла и влияния числа М, которые существенно изменяют поперечную управляемость.  [c.337]

К сожалению, это затруднено тем, что ни по одному во просу устойчивости и управляемости самолета не существует такого разрыва между понятиями, принятыми в аэродинамике, и практическими представлениями, сложившимися у летного состава, как по вопросам, связанным с путевой и особенно с поперечной устойчивостью. Сказанное легко подтвердить примерами. Анализируя полеты одного из тяжелых бомбардировщиков, летчики единодушно отмечали, что поперечная устойчивость самолета оставляет желать много лучшего. Но при этом одни летчики считали, что поперечная устойчивость недостаточна и ее следовало бы повысить, а другие, наоборот, полагали, что устойчивость избыточна и требует уменьшения. Надо оказать, что расхождения в качественных оценках пилотажных свойств квалифицированными летчиками встречаются вообще крайне редко, а столь диаметральные расхождения, как в данном случае, буквально единичны, причем возникают они чаще всего именно при оценке боковой устойчивости. ,1  [c.68]

Устойчивость и управляемость сверхзвуковых и дозвуковых самолетов существенно различаются между собой. Для правильного понимания особенностей устойчивости и управляемости и причин, порождающих эти особенности, рассмотрим кратко основные отличительные черты современных сверхзвуковых самолетов, влияющие на характеристики их устойчивости и управляемости. В настоящей статье рассмотрены особенности только боковой (путевой и поперечной) устойчивости и управляемости, свойственные современным самолетам, имеющим сверхзвуковые скорости полета.  [c.92]

Возможно, что на самолетах ближайшего будущего потребуется иметь регулируемые в полете системы поперечного управления как для создания оптимальных характеристик поперечной управляемости на всех эксплуатационных скоростях и высотах полета, так и для предотвращения в случае необходимости возможного выхода самолета на критические угловые скорости крена, обусловленные инерционным взаимодействием продольного и бокового движений самолета. Такая регулировка системы поперечного управления должна будет действовать автоматически, например, в зависимости От высоты и числа М полета.  [c.103]

Диагностирование ходовых качеств автомобиля. Ходовые качества автомобиля, а вместе с ними интенсивность изнашивания шин, расход топлива и управляемость автомобиля в большой степени зависят от параметров установки управляемых колес схождения, развала, продольного и поперечного наклонов шкворня и соотношения углов поворота, состояния колес, амортизаторов и др. Измерение перечисленных параметров связано со значительными трудовыми и материальными затратами. Кроме того, оно проводится в статике, т. е. вне фактической связи параметров между собой в процессе движения автомобиля. Поэтому до проведения диагностирования ходовой части автомобиля необходимо выполнить общее диагностирование переднего моста автомобиля в динамике по интегральному параметру..  [c.149]

Получение отверстий лазером возможно в любых материалах. Как правило, для этой цели используют импульсный метод. Производительность достигается при получении отверстий за один импульс с больиюй энергией (до 30 Дж). При этом основная масса материала удаляется из отверстия в расплавленном состоянии под давлением пара, образовавшегося в результате испарения относительно небольшой части вещества. Однако точность обработки одноимлульсным методом невысокая (10. .. 20 размера диаметра), Максимальная точность (1. .. 5 %) и управляемость процессом достигается при воздействии на материал серии импульсов (многоимпульсный метод) с относительно небольшой энергией (обычно 0,1. .. 0,3 Дж) и малой длительностью (0,1 мс н менее). Возможно получение сквозных и глухих отверстий с различными формами поперечного (круглые, треугольные и т. д.) н продольного (цилиндрические, конические и другие) сечений. Освоено получение отверстий диаметром 0,003. .. 1 мм при отношении глубины к диаметру 0,5 10. Шероховатость поверхности стенок отверстий в зависимости от режима обработки и свойств материала достигает/ а — 0,40. .. 0,10 мкм, а глубина структурно измененного, или дефектного, слоя составляет 1. .. 100 мкм. Производительность лазерных установок при получении отверстий обычно 60. .. 240 отверстии в 1 мин. Наиболее эффективно применение лазера для труднообрабатываемых другими методами материалов (алмаз, рубин, керамика и т. д.), получение отверстий диаметром мепее 100 мкм в металлах, или под углом к поверхности. Получение отверстий лазерным лучом нашло особенно широкое применение в производстве рубиновых часовых камней и алмазных волок. Например, успешно получают алмазные волки на установке Квант-9 с лазером на стекле с примесью неодима. Производительность труда на этой операции значительно увеличилась по сравнению с ранее применявшимися методами.  [c.300]

Аэродинамические расчеты удобно осуществлять всвязанной системе координат. В ней обычно исследуется вращательное движение, решаются задачи устойчивости и управляемости летательного аппарата, так как соответствующие уравнения записываются именно в связанных осях. Это обусловлено тем, что в связанных осях входящие в уравнения моменты инерции аппарата при постоянной его массе не зависят от времени, поэтому интегрирование уравнений упрощается. В этой системе (рис. 1.1.1), жестко связанной с летательным аппаратом, продольная ось Ох аацравлена вдоль главной продольной оси инерции, нормальная ось Оу расположена в продольной плоскости симметрии и направлена к верхней части летательного аппарата, а поперечная ось Ог ориентирована вдоль размаха правого крыла, образуя правую систему координат. Положительное направление оси Ох от хвостовой части к носку соответствует случаю необращенного движения. Согласно рис. 1.1.1, в обеих системах координат — скоростной и связанной — их начало располагается в центре масс летательного аппарата.  [c.10]


Используя балансировочные уравнения = О и ту = О, можно проанализировать путевую и поперечную статическую управляемость в зависимости от характера статической устойчивости, определив при этом соответствующие значения отношений и К.аглЬбал (или 8з.бал/аба.л)-  [c.83]

Поведение сверхзвуковых самолетов. На сверхзвуковых самолетах явления валежка , обратная реакция по крену на скольжение, ухудшение поперечной управляемости и динамических свойств самолета на больших высотах — практически не проявляются, что значительно упрощает пилотирование самолета и делает полет-более безопасным. Это достигается за счет более совершенной аэродинамической формы сверхзвукового самолета, значительной жесткости конструкции, улучшения динамических свойств самолета на больших высотах благодаря постановке демпферов. Демпфер, как и автопилот, работает автоматически. Реагируя на угловую скорость самолета, демпфер через раздвижные тяги соответлтвующим образом отклоняет рули самолета, не действуя при этом на штурваб (ручку) управления и педали.  [c.57]

Суммарные силы и моменты у комля вращающейся лопасти передаются на фюзеляж вертолета. Постоянные составляющие этих реакций втулки в невращающейся системе координат представляют силы и моменты, необходимые для балансировки вертолета. Высокочастотные составляющие вызывают вибрации вертолета. Если в модели винта учтено движение вала, то эти силы и моменты определяют характеристики устойчивости и управляемости вертолета. На рис. 9.7 показаны силы и моменты, действующие на вращающуюся лопасть, а также силы и моменты, действующие на втулку в невращающейся системе координат. Вертикальная сила Sz участвует в создании тяги, а силы в плоскости вращения Sx и —в создании продольной и поперечной сил несущего винта. Момент в плоскости взмаха Nf создает продольный и поперечный моменты несущего винта, а момент в плоскости вращения — крутящий момент на валу винта. Условимся, что положительные реакции втулки действуют на вертолет, за исключением аэродинамического крутящего момента Q, который по определению воздействует на винт (реактивный момент, передаваемый от винта на втулку, поло-  [c.389]

Уравнения движения. Движение вертолета на режиме висения разделяется на вертикальное и продольно-поперечное. При этом продольное и поперечное движения могут анали-, зироваться по отдельности. Такое разделение вполне корректно для двухвинтовых вертолетов соосной схемы изолированными также являются поперечное движение вертолета продольной схемы и продольное движение вертолета поперечной схемы. Для одновинтового вертолета (с рулевым винтом) основные характеристики управляемости в продольном и поперечном движениях получены при раздельном их анализе, хотя в разд. 15.3.6 рассмотрена и полная модель вертолета с учетом взаимосвязи этих движений.  [c.716]

Для режима висения ( i = О, пв = 0) уравнения сводятся к полученным в разд. 15.3.1. При полете вперед возникают инерционные силы, обусловленные центробежными ускорениями при повороте вектора скорости вертолета относительно связанных осей. Это в основном вертикальное ускорение, вызываемое угловой скоростью тангажа, и поперечное ускорение, создаваемое угловой скоростью рыскания (заметим, что эти силы связывают вертикальное и продольно-поперечное движения). Поскольку задачей анализа является определение характеристик управляемости вертолета при полете вперед, необходимо ввести еще ряд допущений. Будем пренебрегать инерционной взаимосвязью крена и рыскания (/л 2 = 0), а также малыми величинами HtganB и g sinans. Не будем учитывать малые балансировочные эйлеровы углы, что упрощает выражения для угловых скоростей р = (fB, q = г = ifB-  [c.749]

Демпфирование увеличивалось путем применения гидростабилизирующего стержня, с помощью которого осуществлялась запаздывающая обратная связь по угловой скорости. Величина Мд При ЭТОМ увеличивалась в 3 раза относительно исходного значения. Запаздывающая обратная связь по угловой скорости существенно улучшала продольную управляемость при взятии ручки на себя . Без стабилизирующего стержня нормальное ускорение нарастало слишком долго, угловое ускорение было постоянным в течение первых 1,5 с, а кривизна кривой нормального ускорения была положительной в течение 2,5 с. С увеличением продольного демпфирования в 2—3 раза были получены приемлемые характеристики управляемости. Угловое ускорение быстро уменьшалось, и угловая скорость становилась постоянной. Кривая нормального ускорения сразу начинала подниматься вверх, а ее кривизна становилась отрицательной менее чем за 2 с. Увеличение демпфирования уменьшило частоту и увеличило Бремя удвоения амплитуды длиннопериодических колебаний они даже становились слабо устойчивыми при увеличении демпфирования в 2,7 раза относительно исходного. Поперечная управляемость при полете вперед оставалась удовлетворительной при введении запаздывающей обратной связи по 1угловой скорости крена. Увеличение поперечного демпфирования уменьшило установившуюся реакцию угловой скорости крена, которая обычно слишком велика. Начальное значение углового ускорения крена не изменилось, обратная связь улучшила длиннопериодическую реакцию и дала более постоянную реакцию угловой скорости крена на поперечное отклонение ручки.  [c.766]

Способность бесшарнирного винта передавать на вертолет большие моменты на втулке оказывает сильное влияние на управляемость. В противоположность этому на шарнирном несущем винте создается сравнительно небольшой момент на втулке вследствие относа ГШ, приблизительно сравнимый с моментом относительно центра масс вертолета при наклоне равнодействующей на винте. Бесшарнирный винт обеспечивает более высокую эффективность управления, чем шарнирный, и еще более высокое демпфирование по тангажу и крену. Большое демпфирование связано с повышенной чувствительностью к порывам ветра, так что скоростной вертолет с бесшарнирньш винтом часто нуждается в какой-либо автоматической системе управления для подавления влияния порывов ветра. Сильно увеличивается также взаимосвязь продольной и поперечной реакций винта на отклонение управления правда, ее можно в удовлетворительной степени уменьшить надлежащим выбором угла опережения управления. Однако существенная взаимосвязь продольного и поперечного движений в переходных процессах и при воздействии внешних возмущений остается. Значительно большая по сравнению с шарнирным винтом неустойчивость по углу атаки бесшарнирного винта требует для предотвращения ухудшения управляемости установки стабилизатора большой площади или автоматической системы управления. Бесшарнирный  [c.773]

Военный стандарт США MIL-H-8501A определяет характеристики управляемости в полете и на земле для военных вертолетов. Этот стандарт является хотя и несколько устаревшим, но все же наиболее полным собранием норм летных характеристик. В отношении статической устойчивости стандарт определяет минимальное и максимальное значения начального градиента усилий на ручке в продольном и поперечном направлениях и требует, чтобы он был всегда положителен. В продольном управлении градиенты усилия и отклонения ручки по скорости полета должны соответствовать устойчивости умеренная степень неустойчивости допускается только для ПВП в диапазоне малых скоростей полета, хотя вообще она нежелательна. При полете вперед требуются устойчивые градиенты отклонения поперечного управления и педалей по углу скольжения, путевая устойчивость и устойчивость по поперечной скорости. Для ППП путевое и поперечное управления должны иметь устойчивые градиенты по усилиям и по отклонениям. Оговорены также усилия на рычагах управления на переходных режимах, паразитные перекрестные связи по этим усилиям, запасы управления и другие факторы. Характеристики динамической устойчивости при полете вперед оговорены в стандарте MIL-H-8501A в терминах периода и демпфирования длиннопериодического движения. На рис. 15.15 суммированы требования для эксплуатации по ПВП и ППП.  [c.785]

Габариты и маневренность изучаемого автомобиля. Распределение нагрузки по колссам, расположение центра тяжести. Силы, действующие на автобус при движении. Сцепление колес с дорогой условия, ухудшающие сцепление, и меры предосторожности. Силы, действующие при торможении. Динамическое перераспределение нагрузки по осям при торможении. Остановочный путь и составляющие его элементы. Факторы, влияющие на длину тормозного пути. Особенности торможения на скользкой дороге, крутых подъемах и спусках. Торможение с неотсоединенным двигателем. Параметры, характеризующие эффективность торможения. Условия возникновения бокового заноса. Влияние нагрева тормозов на стабильность их действия. Влияние величины и распределения нагрузки в салоне автобуса на эффективность торможения. Причины, вызывающие потерю автомобилем устойчивости. Факторы, влияющие на управляемость, Меры водителя, обеспечивающие устойчивость автомобиля в различных условиях движения, особенно на крутых поворотах, при выпуклом поперечном профиле дороги и т. п. Допустимая нагрузка автобуса, легкового таксомотора. Влияние перегрузки на устойчивость и управляемость автомобиля. Опасные последствия перегрузки. Влияние стоящих пассажиров на положение центра тяжести и устойчивость автобуса меры предосторожности.  [c.759]


Независимая подвеска получила наибольшее применение в легковых автомобилях главным образом в качестве передней подвески. Перемещение колеса при колебаниях в этих подвесках может совершаться в различных плоскостях поперечной, продольной и продольнопоперечной. Независимая подвеска повышает управляемость и устойчивость автомобиля и обеспечивает высокую плавность хода.  [c.207]

Полностью развитая каверна, охватывающая гидропрофиль под углом атаки, представляет собой частный случай несимметричной суперкаверны. В общем случае асимметрия тела или его ориентации (например, угол атаки), сила тяжести (или какие-либо другие массовые силы) и несимметрия граничных поверхностей приводят к нарушению симметрии течения, каверны и связанного с ними поля гидродинамического давления около тела. Возникающая при этом поперечная сила представляет большой интерес главным образом с точки зрения создания подъемной силы, а также с точки зрения специальных проблем устойчивости и управляемости тела с каверной. Гидропрофили относятся к числу таких тел, и благодаря их большому практическому значению были выполнены обширные исследования гидродинамики течений с развитой кавитацией. В частности, особое внимание уделялось простому двумерному профилю как основному элементу конструкций. Рассмотрим лишь основные достижения в этой области.  [c.242]

Боковой увод. Большое влияние на срок службы шин, а также на управляемость автомобилем оказывают боковые силы. Последние возникают как в результате нормального нагружения наклоненного неподвижного колеса, так и при У1вижении автомобиля на повороте. Боковые силы вызывают проскальзывание шин в поперечном направлении в плоскости контакта шины с дорогой, что влечет за собой интенсивный износ протектора.  [c.321]


Смотреть страницы где упоминается термин Управляемость поперечная : [c.83]    [c.32]    [c.33]    [c.773]    [c.100]   
Справочник авиационного инженера (1973) -- [ c.57 ]



ПОИСК



Поперечная управляемость в криволинейном полете

Поперечные устойчивость и управляемость

Управляемость



© 2025 Mash-xxl.info Реклама на сайте