Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электродвигатели Определение

Расчеты обычно начинают с определения потребной мощности привода, выбора электродвигателя, определения общего передаточного числа механизма и разбивки его по ступеням. Затем приводят расчеты ременной, цепной и зубчатой передач, муфт, винтовых пар и др. При этом необходимо обосновать выбор материалов соответствующих деталей, вида термообработки, допускаемых напряжений, расчетных коэффициентов и др. Необходимо обосновать также выбор размеров, устанавливаемых не расчетом, а конструктивными соображениями или на основе рекомендаций из учебной или справочной литературы.  [c.14]


Как при том, так и при другом способе испытания желательно применять электродвигатели постоянного тока, позволяющие постепенно повышать число оборотов при испытании, а при необходимости определения к. п. д. редуктора — балансирные приводные электродвигатели, определение крутящего момента на валу которых, а также затрачиваемой мощности не представляет затруднений.  [c.454]

Профилактические испытания электродвигателей. Периодичность, испытаний. Объем испытаний и измерений в зависимости от мощности и напряжения электродвигателя. Определение правильного л -ложения щеток на двигателях постоянного тока.  [c.334]

Расчет приводного устройства включает выбор электродвигателя, определение размеров барабанов, звездочек и шкивов, передаточного числа механизма, выбор редуктора, проверку электродвигателя по пусковому моменту, расчет тормозного момента и времени выбега конвейера, выбор тормоза, расчет упругого скольжения ленты.  [c.82]

Содержание расчетной части записки. Расчетная часть записки должна содержать 1) кинематические и энергетические расчеты (определение КПД привода, выбор электродвигателя, определение общего передаточного отношения привода и разбивка его между отдельными передачами и внутри каждой из них, определение частот вращения валов привода, вращающих моментов, и т. п.) 2) расчеты на прочность деталей привода передач (зубчатых, червячных, ременных, цепных и др.), валов, соединений (шпоночных, зубчатых, с натягом, резьбовых, сварных), муфт 3) тепловые расчеты (для редукторов с повышенным тепловыделением) 4) расчеты на долговечность подшипников с учетом режима нагружения.  [c.267]

При изучении темы Теорема о движении центра масс рассматриваются вопросы крепления электродвигателя, определения частоты и амплитуды колебаний, возникающих из-за неуравновешенности масс ротора.  [c.25]

Табличная форма включает наименование оборудования, установленные на нем электродвигатели определенной мощности и в итоге указывает суммарную установленную мощность по всей системе механизации.  [c.207]

После подбора электродвигателя, определения мощности ведущего вала привода Л вщ и угловой скорости его Пвщ или (йЕщ вычисляется передаточное число привода / по формуле  [c.303]

При подборе сопротивлений переменного тока нужно учитывать что сопротивление включают не между обмоткой статора электродвигателя и питающей сетью, а в ротор электродвигателя. Следовательно, расчетные данные сопротивления зависят не от напряжения сети, а от напряжения между кольцами ротора. Каждое сопротивление предназначено только для электродвигателя определенной мощности с определенным напряжением между кольцами ротора.  [c.181]


ВЫБОР КРАНОВЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ЭЛЕКТРОПРИВОДОВ  [c.186]

Выбор крановых электродвигателей. Определение параметров электроприводов  [c.187]

Энергетические и кинематические расчеты (определение к.п.д. отдельных частей и всего привода в целом, выбор электродвигателя, определение общего передаточного числа привода и отдельных сборочных единиц, определение скорости вращения каждого вала редуктора, коробки скоростей и вращающих моментов).  [c.252]

Кинематические расчеты (подбор электродвигателя, определение угловых скоростей валов и передаточных чисел).  [c.287]

Выбор потребной мощности электродвигателя, определение общего передаточного числа привода и распределение его по отдельным передачам.  [c.13]

Электродвигатель определенной мощности, выбранный для механизма грузоподъемной машины, должен удовлетворять следующим основным требованиям  [c.204]

Расчет приводной установки обычно начинается с выбора электродвигателя, определения общего передаточного числа механизма и разбивки его по ступеням. Исходными данными для этой части расчета являются указываемые в задании на проектирование мощность на рабочем валу, его угловая скорость и кинематическая схема привода В ряде случаев дополнительно указываются характер нагрузки, режимы работы механизма и т. п.  [c.41]

За один двойной ход долбяка 10 стол 11 с обрабатываемой деталью поворачивается на определенный угол, что достигается введением в станок настраиваемой кинематической связи. От электродвигателя 1 вращение передается по трем основным направлениям, обеспечивая  [c.312]

ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ. КИНЕМАТИЧЕСКИЕ РАСЧЕТЫ. ОПРЕДЕЛЕНИЕ МОМЕНТОВ НА ВАЛАХ  [c.5]

Для пуска приводов с большими инерционными массами (грузоподъемные машины, приводы конвейеров, прессов, центрифуг и др.) электродвигатели должны обладать большими пусковыми моментами. При жестком соединении звеньев кинематической цепи разгон масс происходит быстро, в течение долей секунды (обычно до 0,5 с). Это приводит к большим инерционным нагрузкам деталей привода. В таких приводах следует применять пусковые муфты. Основой таких муфт могут быть автоматические самоуправляемые центробежные муфты различных конструктивных исполнений. Пусковые муфты позволяют электродвигателю легко разогнаться и, по достижении им определенной частоты вращения, начать плавный разгон рабочего органа. Одновременно пусковые муфты являются и предохранительными.  [c.330]

При монтаже приводов, состоящих из электродвигателя и редуктора (коробки передач, вариатора и пр.), должны быть выдержаны определенные требования точности относительного положения узлов. Для этого узлы привода устанавливают на сварных рамах или литых плитах.  [c.334]

При проектировании привода к ленточному транспортеру (рис. 11.3, а) цепная передача была предусмотрена в кинематической схеме между электродвигателем (п = 720 об/мин) и редуктором расчетом был определен шаг однорядной втулочно-роликовой цепи = 25 мм.  [c.196]

Выбор мощности для длительного режима нагрузки. Электродвигатель подбирается по каталогу по определенной мощности в соответствии с режимом эксплуатации механизма. При выборе мощности электродвигателя различают три основных режима нагрузки длительный, кратковременный и повторно-кратковременный.  [c.16]

После определения номинальной мощности, исходя из конкретных условий работы, выбирают тип электродвигателя.  [c.18]

Кинематический расчет привода производится одновременно с подбором по каталогу приемлемого по мощности и частоте вращения электродвигателя и сводится к определению общего передаточного числа привода и разбивки его между отдельными узлами и типами передач согласно принятой кинематической схеме.  [c.20]


Выбор электродвигателя и кинематический расчет. 2. Определение мощностей н передаваемых крутящих моментов на валах.  [c.284]

Если из задачи об определении закона движения механизма станка, выполненной еще до его силового расчета (по методике, изложенной в гл. 4), использовать значение УИ-, — приведенного к звену / движущего момента электродвигателя, и значение У — приведенного момента инерции I группы звеньев, то уравнение (5.5) примет вид  [c.190]

Колебания скорости звена приведения при работе машинного агрегата приводят к изменению момента движущей силы Мд, так как для большинства двигателей Мд является функцией ш (см. гл. 22). У ряда двигателей — синхронных электродвигателей, гидродвигателей и др. (см. гл. 20), имеющих жесткую характеристику, эти колебания незначительны. Но для некоторых (асинхронных, постоянного тока с параллельным возбуждением и др.) они существенны. Поэтому для более точного определения момента инерции маховика следует учитывать характеристику двигателя. Если участок  [c.345]

Решение. Для определения требуемой мощности электродвигателя можно принять  [c.265]

Машины состоят из деталей—изделий из однородного материала, полученных без сборочных операций (болт, шпонка, вал, зубчатое колесо ит. д.),и сборочных единиц — изделий, собранных из деталей на предприятии-изготовителе (муфта, шарикоподшипник, редуктор и т. п.). Сборочная единица, которая может собираться отдельно от других составных частей изделия, называется узлом. Укрупненный, обладающий полной взаимозаменяемостью узел, выполняющий определенную функцию, называется машинным агрегатом (например, электродвигатель, силовая головка, насос), а метод компоновки промышленных изделий из отдельных агрегатов называется  [c.4]

Рабочий режим гидромотора будет определяться точкой пересечения характеристик /Ид = / (п) и = / (п) — точка при t/i, =1. Для определения рабочего режима электродвигателя достаточно воспользоваться координатами точки с и уравнением (13.16). На рис. 13.6 рабочий режим электродвигателя показан точкой е.  [c.219]

Рассмотрим схему автоматической систел ы программного управления станков типа токарных или револьверных (рис. 28.10). Иа этой схеме каждглй из электродвигателей W является приводом соответствующего исполнительного механизма станка. Блок программы представляет собой устройство, протягивающее магнитную лепту 5 последовательно мимо двух магнитных головок 3 и 4. Для управления каждым из электродвигателей 10 установлен магнитный пускатель 9 и кнопка /. При нажиме кнопки 1 одновременно включается двигатель 10 и соответствующий генератор 2, генерирующий электрические колебания определенной частоты.  [c.587]

Подачами являются перемеш,ения заготовки или инструмента вдоль или вокруг координатных осей. Выражения и размерности подач определяются схемами шлифования. Глубина резания t (мм) определяется толщиной слоя материала, срезаемого за один проход. Оптимальные режимы резания выбирают по справочным данным. Для расчета элементов ишифовальных станков, конструирования приспособлений для работы на них и оценки точности обработки необходимо знать силы резания. Силу резания Р, возникающую при шлифовании в зоне контакта круга и заготовки, для удобства расчетов разлагают по координатным осям на три составляющие (рис. 6.92) тангенциальную Р , радиальную Ру и осевую Р . Составляющую Ру используют в расчетах точности обработки, Р — необходима для проектирования механизмов подач шлифовальных станков, Р используют для определения мощности электродвигателя шлифовального круга.  [c.361]

У станка с шаговыми двигателями (рис. 6.119) для перемещения стола по двухМ координатам перфорированная лента (с отверстиями) 1 перемещается специальным механизмом. Лента выполнена из плотной бумаги или пластмассы. Расположение отверстий на дорожках ленты соответствует импульсам, передаваемым органам станка (столу, шпинделю и т.д.). Информацию программоносителя воспринимает считывающее устройство 2. Нижний и верхний (шарик) контакты могут замкнуться и дать импульс только тогда, когда между ними окажется отверстие ленты. Информация считывается с каждой ее дорожки. Распределители импульсов 3 передают их в усилители 4. Импульсы тока необходимой величины поступают в шаговые электродвигатели 5. При этом каждому импульсу соответствует определенный угол поворота вала электродвигателя. Если подавать на электродвигатель энергию в дискретной форме (в соответствии с расположением отверстий на ленте), то в итоге его вал повернется на заданную величину. Связанные с электродвигателями ходовые винты 6 и 7 обеспечивают подачу стола 8 вдоль координатных осей X п у. Величины перемещений зависят от числа переданных импульсов, а скорость — от частоты импульсов.  [c.395]

Чертежные автоматы с шаговыми электродвигателями более просты. Угол поворота ротора такого электродвигателя пропорционален числу импульсов, поданных иа обмотки его статора. Поэтому удобно задавать не абсолютные координаты, а приращения координат относительно предыдущей точки. В состав такого ЧА входит интерполятор (линейный, круговой, параболический), преобразующий приращения координат в определенную последовательность импульсов, управляющих шаговыми двигателями. Алгоритм работы интерполятора рассматривается, например, в [10].  [c.51]

Пиковые нагрузки могут быть лyчaйны и, действующими ограниченное число раз, и если их определение затруднено, то расчет можно вести па двукратную перегрузку по крутящему моменту. Эту перегрузку обеспечивает асинхронный электродвигатель в период пуска 2.  [c.282]


На рис. 11.17,6 показано, что преобразованные сигналы датчиков перемещений системы управления подаются в виде электрических напряжений и, на соответствуюихие приводы, которые прикладывают определенные моменты или силы к звеньям и перемещают их на нужные расстояния. Скорость вращения каждого электродвигателя регулируется напряжением, подводимым к якорю двигателя, а управление этими напряжениями осуществляется от датчиков положения звеньев.  [c.332]

Задача 241-45. Для определения мощности электродвигателя через его шкив перекинута тормозная лента (рис. 269, а). Один конец ленты удерживается динамометром, а к другому концу прикреплена двухкилограммовая гиря. После запуска двигателя при установившейся частоте вращения и= 1850 мин динамометр показывает усилие 49 Н. Определить мощность двигателя. Решение.  [c.318]

Примеры разработки алгоритмов будут даны в последующих разделах пособия, здесь же проиллюстрируем основные моменты построения алгоритма на примере определения рабочих характеристик асинхронного электродвигателя, т.е. зависимостей потребляемой мощности Pi и тока 1, КПД, коэффициента мощности osip и момента двигателя Л/д от скольжения s. Необходимо также определить номинальное скольжение Show и время разгона Гр.  [c.56]

Согласно методу электроаналогии каждой ячейке тепловой, магнитной или деформационной сетки можно поставить в соответствие элемент разветвленной электрической цепи ц иметь дело в дальнейшем с эквивалентным электрическим аналогом. Соответствующее соединение элементарных ячеек образует сетку для отдельных деталей, а их последующее объединение — эквивалентную сеточную модель ЭМУ в целом. Для примера схематично показаны тепловая (рис. 5.4, а) в виде сетки Т и деформационная (рис. 5.4, б) в виде сеток по оси а и в радиальном направлении г модели для одного из гироскопических электродвигателей. В уэлы сеток вводятся токи, моделирующие соответственно тепловые или магнитные потоки, или усилия, действующие в данных объемах. Заданием определенных значений потенциалов и токов в нужных узлах вводятся также и граничные условия задачи.  [c.122]

Организация взаимосвязей программных модулей при выполнении различных заданий осуществляется с помощью управляющих программ вероятностного анализа и расчета допусков на параметры. Так, например, с помощью управляющей программы вероятностного анализа удается реализовать такие логически сложные алгоритмы, как алгоритм оценки несимметричности энергопотребления и других рабочих показателей электродвигателей, работающих в составе. привода, возникающей из-за реального распределения входных параметров двигателей в пределах допусков. Укрупненная схема программной системы вероятностного анализа и определения допусков на параметры гиродвигателей приведена на рис. 6.44.  [c.265]


Смотреть страницы где упоминается термин Электродвигатели Определение : [c.463]    [c.253]    [c.139]    [c.91]    [c.67]   
Справочник машиностроителя Том 2 (1955) -- [ c.378 ]

Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.467 ]

Подвижной состав и основы тяги поездов (1976) -- [ c.36 ]



ПОИСК



Выбор крановых электродвигателей. Определение параметров электроприводов

Обоснование выбора оптимального значения и определение величины веса противовеса б Определение мощности и выбор типа электродвигателя

Определение допустимой частоты включений электродвигателей

Определение максимальной нагрузки котла при работе с одним дымососом или дутьевым вентилятором и на разных частотах вращения их электродвигателей

Определение максимальной нагрузки котлоагрегата при работе с одним дымососом или дутьевым вентилятором и на разных частотах вращения их электродвигателей

Определение мощности насоса и подбор электродвигателя

Определение мощности приводного электродвигателя

Определение мощности электродвигателей стайка

Определение мощности электродвигателя

Определение мощности электродвигателя для привода закаточных автоматов

Определение передаточных отношений при приводе от многоскоростного электродвигателя переменного или постоянного тока

Определение требуемой мощности электродвигателя

Определение угловой скорости вала электродвигателя

Определение установочной мощности электродвигателей мельниц по эмпирическим формулам

Пиша 1. Выбор электродвигателя. Кинематические расчеты. Определение моментов на валах

ЭЛЕКТРОДВИГАТЕЛИ 357 ЭЛЕКТРОДВИГАТЕЛИ

Электродвигатели Номинальный ток — Определение

Электродвигатели Определение расхода электрической

Электродвигатели Потери напряжений - Определение

Электродвигатели Реостаты пусковые - Определение ступеней графическим методом

Электродвигатели переменного тока Номинальный ток с несколькими ступенями скорости — Определение

Электродвигатели переменного тока Номинальный ток с регулировкой скорости — Определение

Электродвигатели переменного тока с сериесной характеристикой Определение

Электродвигатели переменного тока с шунтовой характеристикой Определение

Электродвигатели прокатных станов - Определение мощности

Электродвигатели — Выбор 5, 6 Определение мощности

Электродвигатели — Выбор 5, 6 Определение мощности установочные размеры

Электродвигатель

Электромеханические свойства асинхронных короткозамкнутых электродви- I Мощность, потребляемая станком, и определение мощности электродвигателя



© 2025 Mash-xxl.info Реклама на сайте