Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электродвигатель шаговый

В командоаппаратах с контролем по времени основным элементом является многопозиционный распределительный орган, который в процессе работы непрерывно или скачками переключается и выдает при этом команды в необходимой последовательности. Переключение распределительного органа обеспечивается вращающимся валиком. Весь цикл осуществляется за один оборот. Валик может приводиться в движение от электродвигателя, шагового искателя и т. д.  [c.151]

Оба этих электродвигателя шаговые, и доступ к ним открывается после снятия перчаточного ящика.  [c.851]


Автоматическая линия для механической обработки валов и роторов электродвигателей (рис. 272). На линии выполняются все операции механической обработки, запрессовка вала в ротор, балансировка вала с ротором, контроль. Линия состоит из типовых станков, которые можно использовать не только в автоматической линии, но и в цехах серийного и массового производства, с ручной загрузкой станков или с загрузкой из магазина. Все станки и транспортные устройства можно переналаживать на обработку валов разных типоразмеров — длиной от 275 до 523 мм. Перемещение обрабатываемых деталей осуществляется шаговым транспортером. Производительность линии 210—250 тысяч валов в год в зависимости от их размеров. На позициях линии выполняются следующие операции 1) загрузка 2) фрезерование тор-  [c.461]

Перемещение регистрирующего органа в ЧА обеспечивается с помощью электродвигателей постоянного тока или шаговых.  [c.51]

В качестве электрических исполнительных устройств используют электродвигатели (асинхронные с короткозамкнутым ротором с двумя скоростями рабочей и ползучей , и шаговые), электромагниты и электромагнитные муфты (дисковые, асинхронные и порошковые),  [c.483]

Приводы промышленных роботов. Наибольшее распространение имеют гидравлические приводы и несколько меньшее — пневматические. Электромеханический привод сейчас применяется реже других, но в будущем его роль будет возрастать с появлением специальных электродвигателей, которые не будут требовать редукторов, будут иметь малый момент инерции и повышенную нагрузочную способность. Применяются электроприводы как непрерывного, так и дискретного действия (шаговые двигатели). К достоинствам электропривода по сравнению с пневмо- и гидроприводом можно отнести отсутствие трубопроводов, легкость монтажа и наладки, простоту эксплуатации. В последнее время появились унифицированные электромеханические модули (блоки) для отдельных видов движения (подъем, поворот и т. п.). Из этих модулей можно составлять исполнительные устройства роботов при различных сочетаниях требуемых перемещений захвата. Разработка и выпуск унифицированных модулей, наряду с улучшением качества специальных электродвигателей, будет способствовать распространению электропривода в промышленных роботах.  [c.269]

Наиболее простыми являются электромагнитные соленоидные шаговые двигатели (рис. 122, а), сердечник (якорь) которых связан с ведомым валом привода обычно храповым устройством. Реверсирование обеспечивается постановкой спаренных соленоидов (рис. 122, б). Однофазный нереверсивный шаговый электродвигатель с вращающимся двухполюсным ротором (рис. 123, а) имеет на статоре одну пару полюсов из постоянных магнитов, другую — с обмотками управления. При отсутствии тока в обмотке ротор устанавливается в положение, показанное на рисунке. При подаче в обмотку электрического импульса ротор поворачивается на 90°, причем направление поворота совпадает с направлением клюва у полюсов ротора 2. Прекращение импульса вызывает поворот ротора еще на 90° и т. д. Общее число полюсов на статоре 1 может быть и больше четырех, но оно всегда кратно четырем, соответственно изменяется и шаг поворота. В двухфазных нереверсивных двигателях (рис. 123, б) каждая пара полюсов статора имеет свою обмотку управ-  [c.200]


По длине статора каждый полюсный наконечник разделен на три равные части — секции, каждая из которых имеет свою независимую Pj . 124. Шаговый электродвигатель обмотку с автономным питанием.  [c.201]

I — радиатор воздушного охлаждения 2 — лопастной насос 3 — перепускной клапан 4 — фильтр 5 — золотник с кнопкой для измерения давления 6 — манометр 7 — обратный клапан в ч 13 — гидравлические усилители крутящих моментов продольной и поперечной подач (шаговые электродвигатели ШД-4 вращают в них управляющие золотники) 9 — шаговые электродвигатели 10 и П — гидродвигатель и управляющий золотник вертикального перемещения шпинделя 12 — зубчатая передача с регулируемым боковым зазором между  [c.215]

Пульты второго типа сначала с помощью коммутатора распределяют импульсы по трем каналам, каждый из которых используется для записи перемещений по одной из дорожек. Импульсы, записанные в определенной последовательности на трех дорожках, управляют тремя обмотками шагового электродвигателя, обеспечивая перемещение по соответствующей координате на определенную величину и в заданном направлении. Система управления станком в этом случае проще, так как не имеет кольцевого распределителя.  [c.228]

Из всего многообразия электрогидравлических приводов (ЭГП) следует выделить шаговые приводы, в которых задающим устройством служит шаговый электродвигатель. Этот тип привода позволяет иметь разомкнутый контур управления при наличии только местных внутренних обратных связей,что упрощает как конструкцию самого привода, так и электронную часть системы управления. Шаговые приводы хорошо зарекомендовали себя в качестве привода подач металлорежущих станков и широко применяются в роботах. Диапазон регулирования шаговых ЭГП ограничен возможностями шагового электродвигателя.  [c.161]

Современные шаговые электродвигатели позволяют отрабатывать частоту до 16 кГц при частоте приемистости 2 кГц. Это обеспечивает получение высоких скоростей перемещения при высоких динамических качествах привода. Кроме того, гарантированное дискретное перемещение исполнительного органа при импульсной подаче команд позволяет отказаться от контроля.  [c.161]

Существует несколько модификаций линейного шагового ЭГП. Движение от шагового электродвигателя может передаваться либо непосредственно на винт, либо на втулку. Недостатком пер вого варианта является то, что при больших ходах масса винта, длина которого равна величине хода, оказывается значительной, а это ухудшает динамические качества привода. Уменьшить массу винта за счет уменьшения его диаметра не всегда можно ввиду трудностей обработки. Таким образом, второй вариант с точки зрения получения лучших динамических свойств более предпочтителен, так как имеет значительно меньшую массу подвижных элементов первого каскада усилителя.  [c.162]

В МВТУ им. Н. Э. Баумана разработан и исследован линейный шаговый ЭГП с вращающейся втулкой и симметричной схемой управления (рис. 6.16). Первый каскад привода представляет собой задатчик, состоящий из шагового электродвигателя 1, несилового редуктора 2, управляющей втулки 3 и винта-золотника 4. Роль второго каскада выполняет следящий золотник 5 с двумя полостями управления. Исполнительным органом служит гидроцилиндр 6, шток которого соединен с винтом 4, образуя жесткую внутреннюю отрицательную обратную связь 7. Симметричная схема управления позволила устранить дрейф нуля при колебаниях питающего давления и изменении температурного режима, благодаря чему значительно повысилась надежность работы привода.  [c.162]

Шаговый конвейер. Для транспортирования ступиц применены шаговые конвейеры оригинальной конструкции (рис. 16). Шаговый конвейер имеет каркас 14 с опорными элементами 26 (позициями) для установки транспортируемых деталей 19 и роликами 25, на которых установлена подвижная каретка 13. На каретке смонтированы валики 24 с попарно установленными подъемными рычагами 23, которые при повороте валиков 24 поднимают детали 19 над позициями с помощью призм 21. Поворот валиков 24 осуществляется кулачковым кривошипно-шатунным механизмом, который закреплен на подвижной каретке 13. Этот механизм содержит червячный редуктор 7 с приводным электродвигателем 22. На выходном валу червячного редуктора смонтированы кулачок 4 и кривошип 5 с шатуном 6. Второй конец шатуна 6 шарнирно закреплен в кронштейне 10, установленном на каркасе 14, а кулачок 4 взаимодействует с роликом 8 приводного рычага, который с рычагами 12, тягами 11 подвижной кареткой 13 образует многозвенный шарнирный параллелограмм. Верхние концы рычагов 9 и 12 шарнирно связаны с валиками 24 с помощью собачек 15. В свою очередь, собачки снабжены щупами 20, контролирующими  [c.43]


Первый вариант характерен для линий, в которых объединены технологические роторы с механическим приводом движения исполнительных органов, причем затраты энергии в каждом роторе не превышают величин, соответствующих силе взаимодействия между инструментом и обрабатываемой деталью до 10 кН. Роторы приводятся во вращение от электродвигателя через клиноременную передачу и червячный редуктор. Вращение передается главному валу наиболее нагруженного или среднего технологического ротора. Остальные технологические и транспортные роторы, если они имеют одинаковые шаговые расстояния, измеряемые по траектории  [c.313]

Линейный шаговый волновой электродвигатель работает следующим образом. При помощи бегущего магнитного поля, создаваемого обмотками статора, гибкое звено  [c.145]

Электродвигатель волновой шаговый 145  [c.174]

Рис, 91. Схема устройства шагового электродвигателя  [c.159]

Устойчивость движения механизмов подач, приводимых силовыми шаговыми электродвигателями  [c.182]

За последние годы для привода различных программных устройств все большее применение находят шаговые электродвигатели (ШД), имеюш,ие бесконтактную систему управления. Привод с такими двигателями надежен в работе, обладает высоким быстродействием и способствует применению вычислительных и программных устройств для целей полной автоматизации сложных технологических процессов. , i - i - Ш i  [c.182]

Иногда становится возможным осуществлять такие изменения в технических требованиях, которые ведут к существенному улучшению компоновки, не сказываясь сколько-нибудь отрицательно на целевых функциях и эксплуатационных характеристиках устройства. Причиной может явиться неоправданно жесткая регламентация каких-либо характеристик устройства в исходных требованиях. То же относится и к принципиальной схеме устройства. Различные принципиальные варианты схемы могут быть равноценны с точки зрения целевых функций, но совершенно различны по возможностям реализации, которые выясняются полностью только при конструировании. Примером корректировки такого рода может служить замена обычного электродвигателя электромагнитным шаговым механизмом. Подобная за-  [c.82]

На основании суммарной ошибки вырабатывается команда на подачу резца 2. Корректирующий сигнал подается на импульсный шаговый реверсивный электродвигатель 4, который в зависимости от поданной команды перемещает державку 3 с резцом 2. После подачи сигнала сумматор обрабатывает результаты измерений, полученные от измерительного устройства.  [c.140]

Скользящие токоподводы выполнены по типу вал-втулка. Привод вращения сварочных роликов состоит из тиристорного привода ЭУУ2-1-3027Е и червячного редуктора. Редуктор связан с приводным электродвигателем шаговой электромагнитной муфтой, обеспечивающей необходимые разъединение и соединение их валов при работе машины. В приводе вращения предусмотрены два диапазона скоростей непрерывного вращения роликов  [c.181]

ИЛИ двигатель с регулируемым числом оборотов. В настоящее время разработаны конструкции шаговых электродвигателей, в которых периодически включается цепь питания. При каждом включении ротор электродвигателя иоворачивается точно на заданный угол. Эти включения, или импульсы, посылаются через блок уиравления в соответствии с заданной программой. Через тот же блок подаются команды начала и конца дбижсния, прямого и обратного хода и другие, предусмотренные программой движения. Двигатель с регулируемым числом оборотов обычно имеет девять различных скоростей от 1/9 до 9/9 номинальной скорости.  [c.590]

У станка с шаговыми двигателями (рис. 6.119) для перемещения стола по двухМ координатам перфорированная лента (с отверстиями) 1 перемещается специальным механизмом. Лента выполнена из плотной бумаги или пластмассы. Расположение отверстий на дорожках ленты соответствует импульсам, передаваемым органам станка (столу, шпинделю и т.д.). Информацию программоносителя воспринимает считывающее устройство 2. Нижний и верхний (шарик) контакты могут замкнуться и дать импульс только тогда, когда между ними окажется отверстие ленты. Информация считывается с каждой ее дорожки. Распределители импульсов 3 передают их в усилители 4. Импульсы тока необходимой величины поступают в шаговые электродвигатели 5. При этом каждому импульсу соответствует определенный угол поворота вала электродвигателя. Если подавать на электродвигатель энергию в дискретной форме (в соответствии с расположением отверстий на ленте), то в итоге его вал повернется на заданную величину. Связанные с электродвигателями ходовые винты 6 и 7 обеспечивают подачу стола 8 вдоль координатных осей X п у. Величины перемещений зависят от числа переданных импульсов, а скорость — от частоты импульсов.  [c.395]

Чертежные автоматы с шаговыми электродвигателями более просты. Угол поворота ротора такого электродвигателя пропорционален числу импульсов, поданных иа обмотки его статора. Поэтому удобно задавать не абсолютные координаты, а приращения координат относительно предыдущей точки. В состав такого ЧА входит интерполятор (линейный, круговой, параболический), преобразующий приращения координат в определенную последовательность импульсов, управляющих шаговыми двигателями. Алгоритм работы интерполятора рассматривается, например, в [10].  [c.51]

Графопостроители выпускаются двух основных типов планшетные и рулонные. В планшетном графопостроителе по неподвижной бумаге движется пишущее устройство в виде каретки с пищущими перьями. Поднятие и опускание перьев осуществляются с помощью управляемого электромагнита, а движение каретки—с помощью управляемого шагового электродвигателя. Рулонный графопостроитель отличается тем, что барабан с рулоном бумаги вращается и каретка движется только по одной оси. Управляющие сигналы электродвигателя и электромагнита вырабатываются согласно проектной информации, поступающей из ЭВМ. Связь графопостроителя с ЭВМ осуществляется двояко — непосредственно или через магнитную ленту (перфоленту).  [c.197]


Управление работой шагового двигателя, т. е. заданная последовательность подключения статорных обмоток, осуществляется электронным устройством, которое работает по принципу кольцевой схемы (рис. 125). Основу устройства при трехтактной схеме включения составляют три тиратрона 1, 2, 3, в анодную цепь которых включены обмотки 4, 5, 6 секций полюсов шагового электродвигателя. Если из узла программы на вход схемы подать несколько положительных импульсов, то первый из них, изменяя потенциал сетки первого, допустим, тиратрона, вызовет его зажигание, в анодной цепи и обмотке 4 потечет ток, ротор электродвигателя повернется на один шаг. Вместе с тем, ток в цепи первого тиратрона приведет к появлению тока в цепи R1—R2—R3 (на рисунке его направление показано штриховой линией). Вследствие падения напряжения на сопротивлении потенциал сетки второго тиратрона окажется выше, чем третьего, и следующий импульс приведет к зажиганию второго тиратрона, при этом первый погаснет, чему способствует рязряд конденсатора С1 при включении второго тиратрона. Ротор сделает следующий шаг. Третьим импульсом зажигается третий тиратрон и гасится второй и т. д., т. е. схема работает по кольцу автоматически. Шаговые электродвигатели развивают небольшой крутящий момент, при максимальной частоте срабатывания у двигателя ШД-4 он равен 0,025, у ШД-4В — 0,02, а у ШД-5Б — 0,008 кгс-см.  [c.202]

ДИТ Шаговый привод, иногда он Делается двухступенчатым. Осноеное перемещение ведется на большой скорости и датчик обратной связи ведет счет импульсов. Когда до точки позицирования остается небольшое расстояние, программа выдает сигнал на переключение в приводе, оно осуществляется электромагнитными муфтами. Включается медленная, ползучая подача, а затем и тормоз. Если привод выполняется регулируемым, но бесступенчатым, то электромагнитных муфт в приводе нет и скорость перемещения регулируется электродвигателем, питающимся от мощного преобразователя, управляемого сигналами программы. Преобразователь собирается на магнитных электромашинных усилителях или на тиратронных преобразователях.  [c.210]

В пульте ПРС-ЗК, блок-схема которого показана на рис. 136, считывание программьгпроизводится с магнитной ленты 1. Импульсы от девятиканальной магнитной головки 2 поступают на входы координат X, Y, Z блока управления. В каждой из трех панелей 3 имеется три канала, здесь импульсы из синусоидальной преобразуются в прямоугольную форму, усиливаются и с амплитудой 25 В подаются на соответствующие три обмотки шаговых электродвигателей. Реверсирование -вращения двигателя обеспечивается изменением последовательности подключения обмоток. Кроме автоматического,  [c.215]

Станок ФП-4, который создан на базе станка 6М13ПБ, благодаря программированию поворота стола является более универсальным, чем станок 6Н13ГЭ2. Здесь также применены шаговые электродвигатели типа ШД-4. Программа записывается на магнитной ленте, но каждой координате отведена всего одна дорожка, на ленте их всего четыре, ширина ленты 19 мм. Прямое или обратное перемеще-  [c.216]

Катящаяся по жесткой опорной поверхности гибкая нить мо кет рассматриваться как специфический плоский механизм с одной степенью свободы, кинематическая схема которого описывается уравнением у = Q(x) формы нити, а траектории точек нити представляют собой волно-иды. Функционирование этого механизма является идеализированной моделью многих явлений и процессов используемых в технике и существующих в живой и неживой природе. Известны, например, транспортные средства, передвигающиеся за счет волнообразного движения опорных гибких лент (движителей), шаговые редукторы и электродвигатели, принцип работы которых основан на использовании шагового движения гибкой связи (многозвенной цепи, зубчатого ремня, магниточувствительного гибкого элемента, троса и т. д.), сцепленной с опорной поверхностью (некоторые из этих устройств будут описаны ниже). Поперечные волны на гибких элементах в этих устройствах могут образовываться и перемещаться механическим способом (например, изгибанием ремня или цепи вращающимся роликом), электромагнитным (формированием и движением волны на гибком магниточувствительном элементе под действием электромагнитных сил), гидравлическим, пневматическим и т. д.  [c.99]

В этой главе покажем, каким образом оиисанные свойства бегущих волн на протяженных деформируемых телах могут быть использованы в различных инженерных устройствах — волновых мехапи шах-редукторах, шаговых механизмах, волновых электродвигателях, транспортных устройствах и т. п. Такое важнейшее свойство бегущих волн, как редуцирующее действие (волна движется по телу гораздо быстрее, чем движется само тело), используется при создании редукторов (замедлителей скорости движения звеньев механизмов), являющихся неотъемлемой частью любой машины. Свойство непрерывно бегущей волны дискретно (шагами) переносить частицы деформируемого тела используется при создании шаговых механизмов, преобразующих непрерывные движения ведущих звеньев механизмов в шаговые движения ведомых. Такие механизмы-преобразователи также широко используются практически во всех областях машиностроения и приборостроения — вращение поворотных столов станков, прессов, привод транспортеров и конвейеров, рабочих органов сельхозмашин, полиграфических и текстильных машин, привод движения киноленты, устройств ввода-вывода ЭВМ и др. И, наконец, в технических приложениях бегущей волны могут быть прямые заимствования способов использования волны живыми существами (садовая гусеница, дождевой червь, змея, улитка и др.) как транспортного средства. Идея волнового способа передвижения по опорной поверхпости в технике может быть использована либо в своем натуральном виде, т. е. путем создания бегущей волны на гибком продолговатом опорном теле (такие экспериментальные транспортные средства уже создаются), либо в гибридном виде, когда идея бегущей волны сочетается с идеей опорного колеса. Такое дополнение гениального изобретения нри-  [c.122]

Типичным элементом этой системы управления является электрический шаговый двигатель. Шаговый электродвигатель — это импульсная синхронная машина, преобразующая электрические управляющие сигналы в дискретные перемещения исполнительного органа станка.  [c.159]

Предлагаются динамическая и математическая модели механизмов подач, приводимых силовыми шаговыми электродвигателями, а также методика моделирования и приближенного расчета условий устойчивости таких механизмов. Библ. 3 назв. Ил-лгюстраций I.  [c.192]


Смотреть страницы где упоминается термин Электродвигатель шаговый : [c.64]    [c.632]    [c.134]    [c.34]    [c.512]    [c.218]    [c.313]    [c.145]    [c.147]    [c.187]    [c.97]    [c.145]    [c.83]    [c.342]   
Металлорежущие станки (1985) -- [ c.60 ]



ПОИСК



Аршанский. Устойчивость движения механизмов подач, приводимых силовыми шаговыми электродвигателями

Шаговые волновые механизмы электродвигатели

Шаговые и высокомоментные электродвигатели

Шаговый

ЭЛЕКТРОДВИГАТЕЛИ 357 ЭЛЕКТРОДВИГАТЕЛИ

Электродвигатель

Электродвигатель волновой шаговый



© 2025 Mash-xxl.info Реклама на сайте