Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Машины постоянного тока с параллельным возбуждением

Шунтовые машины — см. Машины постоянного тока с параллельным возбуждением  [c.556]

Машина постоянного тока с параллельным возбуждением  [c.416]

Шунтовые машины — см. Машины постоянного тока с параллельным возбуждением Шурупы 3 — 570, 571, 572  [c.498]

Генератор типа ГСР-9000 является шестиполюсной машиной постоянного тока с параллельным возбуждением и имеет три дополнительных полюса одной полярности.  [c.86]


Генератор Г-74 представляет собой четырехполюсную машину постоянного тока с параллельным возбуждением.  [c.87]

В конструктивном отношении одноякорный преобразователь представляет собой электрическую машину постоянного тока, снабженную контактными кольцами, помещенными на валу со стороны, противоположной коллектору. Питание обмотки возбуждения одноякорного преобразователя постоянным током производится со стороны коллектора так же, как в машинах постоянного тока с параллельным возбуждением. В обмотке якоря протекает переменный ток. Если соединить обмотку якоря с контактными кольцами, как показано на рис. 11.9, то на них получается напряжение переменного тока. Такая электрическая машина и называется одноякорным преобразователем.  [c.264]

Колебания скорости звена приведения при работе машинного агрегата приводят к изменению момента движущей силы Мд, так как для большинства двигателей Мд является функцией ш (см. гл. 22). У ряда двигателей — синхронных электродвигателей, гидродвигателей и др. (см. гл. 20), имеющих жесткую характеристику, эти колебания незначительны. Но для некоторых (асинхронных, постоянного тока с параллельным возбуждением и др.) они существенны. Поэтому для более точного определения момента инерции маховика следует учитывать характеристику двигателя. Если участок  [c.345]

На рис. 132—136 приведены некоторые типы характеристик для двигателей и исполнительных машин. На рис. 132 —для двигателя внутреннего сгорания автомобильного типа на рис. 133 — для электродвигателя постоянного тока с параллельным возбуждением на рис. 134—для электродвигателя постоянного тока с последовательным возбуждением на рис. 135 — для грузоподъемной машины при различных поднимаемых грузах Qj, Q и пренебрегая влиянием скорости на трение в подшипниках и другие сопротивления на рис. 136 приведены характеристики центробежного насоса, компрессора или вентилятора. Для последних характерным является рост моментов от скорости по квадратичной зависимости, а мощности — по кубической.  [c.207]

Плавное регулирование числа оборотов без существенных потерь может быть получено в электродвигателях постоянного тока с параллельным возбуждением. В асинхронных двигателях плавное регулирование числа оборотов невозможно. При применении электродвигателей постоянного тока возможно плавное изменение числа оборотов, но в пределах 0<п < Эта система применима в основном в машинах с непрерывными перемещениями исполнительных органов.  [c.120]


Сигнал, возникающий на выходе мостовой схемы, подается на вход усилителя УЭ-109 (применяется в приборах ЭПП-09, ЭПВ и т. п.). В усилителе сигнал постоянного тока преобразуется в переменный 50-период-ный и усиливается до 3—4 в. Далее сигнал подается на сетку лампы 6П9, в анод которой включено реле последовательно с собственными нормально открытыми контактами. При попадании на сетку 6П9 сигнала разбаланса лампа запирается и отпирается периодически 50 раз в секунду. При этом реле срабатывает от первого же импульса, запирающего лампу, и отключает возбуждение машин постоянного тока. Для включения возбуждения после срабатывания автомата оказывается необходимым замкнуть контакты К2, стоящие параллельно контактам К.  [c.224]

Электрические мащины постоянного тока. Принцип работы. Конструктивные узлы. Принцип обратимости. Обозначение выводов обмоток машин постоянного тока. Разбор принципов работы электродвигателей постоянного тока с параллельным, последовательным й смешанным возбуждением. Их характеристики и особенности.  [c.298]

По роду тока. Машины постоянного тока с независимым или параллельным возбуждением (шунтовые) применяют как двигатели и генераторы, машины с последовательным возбуждением (сериесные) применяют как двигатели, а со смешанным возбуждением (компаундные) — как двигатели и генераторы,  [c.117]

Вспомогательный генератор и возбудитель главного генератора на тепловозах, как правило, выполняются в виде двухмашинного агрегата. Вспомогательный генератор и возбудитель — электрические машины постоянного тока с самовентиляцией защищенного исполнения. Вспомогательный генератор питает обмотку параллельного возбуждения возбудителя, цепи управления, вспомогательные цепи, а также служит для подзарядки аккумуляторной батареи. Возбудитель предназначен для питания независимой обмотки возбуждения тягового генератора.  [c.253]

Вспомогательный генератор типа МВГ-25/11 представляет собой шестиполюсную машину постоянного тока с шестью добавочными полюсами и параллельным (шунтовым) возбуждением.  [c.77]

Весьма распространенным типом электродвигателей, используемых в приводах машин, являются двигатели постоянного тока с независимым или параллельным возбуждением, питаемые от сети — источника бесконечной мощности (рис. 7, а). При построении динамической модели двигателя постоянного тока используются следующие допущения [2 29]  [c.19]

В зависимости от схемы питания обмотки возбуждения машины постоянного тока разделяются на несколько типов двигатели с параллельным, последовательным и смещанным возбуждением.  [c.597]

Электродвигатель стартера представляет собой четырехполюсную машину постоянного тока последовательного возбуждения. Полюсы и корпус 9 изготовляют из мягкой стали. На каждом полюсе закреплена катушка 10 обмотки возбуждения. Обмотка возбуждения состоит из двух параллельных ветвей. В каждую ветвь включено последовательно две катушки. Катушки изготовляют из голого медного провода прямоугольного сечения. Между-витковая изоляция выполняется из плотной бумаги. Каждая катушка после намотки оплетается хлопчатобумажной лентой и пропитывается лаком. Два конца параллельных ветвей обмотки возбуждения соединены вместе и присоединены к контактному болту с выводом 16, закрытым резиновым чехлом. Два других конца присоединены к двум изолированным щеткам /5, установленным в щеткодержателях. Щеткодержатели крепятся к крышке 13 винтами и изолированы от нее прокладками из гетинакса.  [c.136]

Сварочные генераторы являются электрическими машинами постоянного тока, которые в зависимости от конструктивных особенностей могут иметь различные внешние характеристики. Падающая внешняя характеристика генераторов обеспечивается либо специальной схемой включения обмоток возбуждения, либо особой конструкцией полюсов статора и якоря. На рис. 196, а представлена схема сварочного генератора с самовозбуждением с параллельной намагничивающей 2 и последовательной размагничивающей 3 обмотками возбуждения. Эти обмотки генератора включены таким образом, что создаваемые ими магнитные потоки направлены навстречу друг другу. При этом намагничивающий поток Фн не зависит от нагрузки, а размагничивающий поток Фр возрастает по мере увеличения сварочного тока. В результате взаимодействия магнитных потоков генератор имеет падающую внешнюю  [c.305]


На рис. 98 показаны механические характеристики двигателей постоянного тока — зависимость между крутящим моментом, развиваемым двигателем, и его числом оборотов. Наиболее жесткой является характеристика двигателя с параллельным возбуждением, что свидетельствует о незначительном изменении скорости при относительно больших изменениях нагрузки. Мягкая характеристика двигателя с последовательным возбуждением, наоборот,создает значительные изменения скорости при относительно небольших изменениях нагрузки, что позволяет производить перемещение малых грузов с повышенными скоростями это повышает производительность машин. При опускании груза механизмом, имеющим двигатель постоянного тока, энергия поднятого груза возвращается в сеть (рекуперируется), что является преимуществом такого двигателя.  [c.200]

Генератор ОС вращается с постоянной скоростью синхронным двигателем уИ5. Его обмотка 9 параллельного возбуждения питается от якоря и обеспечивает н. с., необходимую для возбуждения машины. Размагничивающая н. с. встречного возбуждения уравновешивается н. с. обмотки 3 независимого возбуждения. Таким образом, ток генератора ОС зависит только от возбуждения обмотки 3, регулируемого машинистом рукояткой управления путём изменения величины сопротивления Яд.  [c.640]

Измерению изоляции подлежат а) в асинхронном двигателе — статорные обмотки всех трех фаз по отдельности с зажимами и обмотка возбуждения с контактными кольцами б) в машинах постоянного тока — обмотки главного тока (якорная), дополнительных полюсов, компенсационная, параллельная главных полюсов, а также внутренняя проводка машины в) в асинхронном короткозамкнутом двигателе — статорные обмотки всех трех фаз.  [c.225]

Двигатели кранов запускают с помощью стартеров. Стартер— это устройство, предназначенное для проворачивания, коленчатого вала двигателя при запуске с помощью электродвигателя постоянного тока. Устройство электродвигателя сходно с устройством генератора. Принцип его действия основан на принципе обратимости электрических машин, т. е. если проводник, по которому проходит электрический ток, поместить в магнитное поле, то в результате взаимодействия магнитного поля витка и магнитного поля электромагнитов статора появляются силы, вращающие виток. Чем сильнее магнитное поле и чем больше сила тока в проводнике, тем больше эти силы. В отличие от генератора обмотки возбуждения соединены с обмоткой якоря не параллельно, а последовательно. Электродвигатель с последовательным соединением обмотки возбуждения называют с е р и -е с н ы м.  [c.91]

По способу возбуждения двигатели постоянного тока подразделяются на три группы с последовательным, параллельным и смешанным возбуждением. Для двигателей с последовательным и смешанным возбуждением характерно резкое увеличение крутящего момента, а следовательно, и мощности с уменьшением числа оборотов вала и наоборот. Это обстоятельство имеет весьма важное значение, так как наличие больших крутящих моментов в период пуска двигателя и его разгона необходимо для преодоления инерции поднимаемого груза и подвижных деталей привода. Применение двигателей постоянного тока требует использования специальных преобразователей переменного тока сети в постоянный, что создает некоторые неудобства. Поэтому в грузоподъемных машинах преимущественно применяют специальные двигатели переменного тока. Такие двигатели получили название крановых.  [c.68]

В грузоподъемных машинах применяют при постоянном токе двигатели с последовательным, параллельным и смешанным возбуждением, при переменном (трехфазном) токе — асинхронные двигатели с контактными кольцами (с фазовыми роторами) и с короткозамкнутыми роторами. Двигатели постоянного тока позволяют плавно регулировать частоту вращения ротора. Электродвигатели с короткозамкнутым ротором применяют для привода грузоподъемных устройств небольших грузоподъемностей или тяговых усилий, а также для привода вспомогательных механизмов кранов. Это обусловлено тем, что такие двигатели в момент пуска вызывают значительные динамические нагрузки на механизм ввиду значительного увеличе-  [c.28]

Генератор управления. Генератор преобразователя ДК-604В — самовентилируемая машина постоянного тока с параллельным возбуждением (см. рис. 57). Внутри цилиндрической станины расположены четыре полюса, сердечники которых набраны из неизолированных стальных листов, скрепленных полюсными заклепками, в одну из которых ввернуты болты, крепящие сердечники полюсов к станине. Между катушками полюсов генератора и его станиной установлены пружинные фланцы. Схема соединения обмоток генератора управления представлена на рис. 59.  [c.84]

Электродвигатели ПП П21 и П41 (рис. 51, 52) являются машинами постоянного тока защищенного исполнения с самовентиляцией. Изготавливают их с параллельным и смешанным возбуждением. На тепловозах ТЭП60 применены электродвигатели ПП и П41 с параллельным, а П21 — со смешанным возбуждением. Завод-изготовитель периодически (по условиям производства) поставляет двигатели ПП смешанного возбуждения вместо параллельного, поэтому на части тепловозов установлены и такие двигатели.  [c.118]

Обычные способы пуска в ход. К этим способам принадлежат следующие виды пуска в ход С. д. 1) при помощи машины, сцепленной с С. д., 2) посредством постороннего двигателя. 1) Если С. д. связан напр, с машиной постоянного тока, то агрегат м. б. пущен со стороны постоянного тока от аккумуляторной ба-тереи или какого-либо другого источника энергии. В этом случае машина постоянного тока приводится во вращение, как двигатель,и, когда скорость вращения достигает синхронной, возбуждают синхронный двигатель присоединение С. д. параллельно к сети переменного тока производится обычным путем, после того как достигнуты синхронизм и полное совпадение фаз напряжения. После присоединения С. л. к сети машина постоянного тока из двигателя переводится в генератор посредством соответствующей регулировки возбуждения. В некоторых случаях в качестве пускового двигателя м. б. использован возбудитель С. д., если мощность этого возбудителя достаточна для этих целей. 2) Часто случается, что С. д. приходится одному работать на привод и не всегда налицо источник постоянного тока, при помощи к-рого можно запустить в качестве двигателя машину постоянного тока, связанную с С. д. тогда для пуска в ход С. д. применяют асинхронный двигатель, причем ротор пускового асинхронного двигателя снабжается короткозамкнутой обмоткой или обмоткой в виде беличьего колеса. Сущность способа пуска в ход при помощи асинхронного двигателя заключается в следующем пусковой асинхронный двигатель, имеющий обычно на два, а иногда на четыре полюса меньше, механически связывается с С. д. Вследствие меньшего числа полюсов асинхронный двигатель может привести во вращение синхронную невозбужденную машину со скоростью выше номинальной. При возбуждении С. д. асинхронный двигатель нагружается, скорость вращения ротора начинает падать, пока скорость вращения С. д. не станет равной синхронной скорости, и при наступлении этого улавливается наиболее благоприятный момент для параллельного включения двигателя к сети. Пусковые двигатели с беличьим колесом не всегда удобны по той причине, что если-момент синхронизма пропущен, то прежде всего нужно охладить беличье колесо и лишь затем приступить к вторичному пуску. Затем не всегда возможно хорошо рассчитать беличье колесо на том основании, что потери холостого хода С. д. со временем меняются. Поэтому иногда приходится исправлять беличье колесо, удаляя несколько стержней или подпиливая соединительное кольцо. Если ротор пускового двигателя снабжен обмоткой, то в некоторых случаях для получения более надежной синхронизации в цепь обмотки ротора вводят реостат, к-рый конечно усложняет и удорожает всю установку. Пусковой ток при пуске в ход асинхронным двигателем составляет 30— 40 % номинального тока С.д. Период пуска длится 5—7 мин., а иногда и более. Мощность пускового двигателя составляет ок. 10% номинальной мощности С. д., если последний запускает ся вхолостую. Если синхронный двигатель приводит в действие насос или компрессор, то пусковой вращающий момент должен быть значителен, что ведет к увеличению пускового двигателя и затруднению самого пуска в ход.  [c.428]


Генератор Г-106 — двухполюсный, постоянного тока, неэкра- кированный, с параллельным возбуждением. Генератор Г-270А является синхронной электрической машиной переменного тока электромагнитного возбуждения со встроенным внутрь кремниевым выпрямительным блоком.  [c.152]

Принципиальная схема высокочастотной электромагнитной машины Lehr фирмы S hen k приведена на рис. 40. Колебательная система машины представляет собой якорь 7 (рис. 40, а), укрепленный на трубчатом упругом элементе 11, жестко соединенном со станиной 10. Испытуемый образец 5 закрепляют в захвате, расположенном на якоре и в захвате 3, находящемся на упруго.м элементе 2 динамометра. Динамометр жестко соединяют с колоколообразной инерционной массой /, которая опирается на пружины 13. Статическую нагрузку на испытуемый образец создают путем сжатия пружин 13 червячно-винтовыми механизмами 12. Параллельно пружинам 13 устанавливают несколько дополнительных пружин (не показаны на рис. 40, а), которые уравновешивают собственный вес массы 1. Переменная нагрузка возбуждается электромагнитной системой S, содержащей катушки / (рис. 40, б), питаемые переменным током от высокочастотного генератора 3, который приводится во вращение электродвигателем 4, и катушки 2, питаемые постоянным током. Последовательно с катушками 2 включен дроссель Др, увеличивающий сопротивление цепи переменному току и таким образом снижающий шунтирующее действие цепи подмагии-чивания на цепь возбуждения с катушками 1. Ток подмагничивания устанавливают реостатом R2 и измеряют амперметром А. Последовательно с ка-  [c.117]

Электрическая тяга на постоянном токе наиболее распространена. Это объясняется возможностью использования в качестве тяговых электродвигателей двигateлeй последовательного возбуждения, характеристики которых в наибольшей степени соответствуют требованиям, предъявляемым условиями тяги поездов. В сравнении с другими машинами электродвигатели последовательного возбуждения обладают следующими преимуществами более высокой степенью электрической и механической устойчивости относительно большим пусковым моментом меньшей чувствительностью к колебаниям подводимого напряжения лучшим использованием сцепного веса и более равномерным распределением нагрузок между параллельно работающими электродвигателями большим диапазоном регулирования скорости. Кроме того, с изменением скорости движения электровоза мощность электродвигателя последовательного возбуждения изменяется в относительно небольших пределах, что обеспечивает более равномерную нагрузку системы энергоснабжения. В условиях эксплуатации возникает необходимость регулирования скорости движения, состоящего в получении различных скоростей при одной и то же силе тяги.  [c.13]

Тормозные режимы. Двигатели смещанного возбуждения допускают все три способа электрического торможения, которые возможны для двигателя параллельного возбуждения (см. рис. 8). Необходимо отметить, что при торможении с отдачей электроэнергии в сеть ток в якоре и в последовательной обмотке меняет направление и может размагнитить машину. Во избежание этого при переходе через точку идеального холостого хода (ло) последовательную обмотку шунтируют. Во втором квадранте механические характеристики имеют вид прямых. Динамическое торможение обычно осуществляется только при работе параллельной обмотки, магнитный поток остается постоянным, вид характеристик подобен характеристикам двигателя параллельного возбуждения. Характеристики в режиме противовключения нелинейны вследствие влияния изменяющейся намагничивающей силы последовательной обмотки возбуждения при меняющейся нагрузке.  [c.37]

Двигатель-генератор представляет собой механическое соединение синхронного двигателя и синхронного генератора первый приключается к одной сети, а второй—к другой. Эта система является наиболее распространенной для соединения сетей между собой. Числа периодов сетей относятся как числа полюсов обеих машин в виду этого двигатель-генератор не может ареобразовывать энергию любой частоты в любую. Возбуждение каждой машины производится обычно от отдельного генератора постоянного тока. Агрегат доводится до синхронной скорости, необходимой для приключения двигателя к его сети, небольшим вспомогательным двигателем или, в новых установках, пользуются асинхронным пуском. В этом случае синхронный двигатель имеет соответствующую конструкцию. Для возможности регулирования непосредственно агрегатом распределения мопщости, при параллельной работе с другими асинхронными машинами, статор двигателя делается поворотным. Сдвигая его относительно статора генератора, можно изменить режим работы. Синхронный двигатель обыкновенно играет и роль синхронного конденсатора— улучшает os 9 своей сети. Отметим, что минимальная мопщость агрегата при параллельной работе станций д. б. не менее 10— 15% мопщости меньшей из них при гидроустановках не менее 15—20%. Вместо синхронного двигателя иногда применяют hh-  [c.308]

Для получения больших сил токов з-д Электрик изготовляет сварочный генератор типа СМК-3 по схеме Кремера. В этом случае падающая характеристика обеспечивается взаимодействием трех обмоток шунтовой, независимого возбуждения и противокомпаундной, противодействующей двум первым. Обмотка независимого возбуждения питается от сети постоянного тока напряжением 110 или 220 V, а при неимении таковой—от отдельного возбудителя. Генератор СМК-3 рассчитан на продолжительную нагрузку 460 А при 50 V и на часовую нагрузку 600 А, число об/м. равно 1450 генератор может применяться как для холодной, так и для горячей С. железными и чугунными электродами до 15 мм и графитовыми 0 ДО 30 мм, а также для дуговой резки. Для получения силы тока больше 600 А нужно включить генератор СМК-3 на параллельную работу с подобными генераторами. Для обращения генератора СМК-3 в многопостную машину (постоянного напряжения 65—85 V) необходимо выключить противокомпаундную обмотку в этом случае работа производится через реостаты. Для сварки дугой переменного тока завод изготовляет переносные однофазные трансформаторы типа СТ-2 на силу сварочного тока 70—300 А. Трансформаторы строятся для непосредственного присоединения к сети однофазного или трехфазного тока напряжением 120/220—380/500 V. Во вторичную Цепь трансформатора включается отдельный индукционный регулятор с подвижным железным сердечником для плавного регулирования силы сварочного тока. Трансформатор и регулятор приспособлены для передвижения и переноски. Вес трансформатора ок. 100 кг, регулятора— около 80 кг. Напряжение холостого хода м. б. установлено 55 или 65 V первое применяется при нормальной работе, второе—при затрудненных условиях работы (колебание напряжения в первичной цепи, удаленность места С. от трансформатора, не вполне опытный сварщик).  [c.111]

При рекуперативном торможении коллекторные двигатели с последовательным возбуж-дешюм не обеспечивают устойчивого режима рекуперации. Поэтому рекуперативное торможение коллекторными двигателями осуществляется при параллельном возбуждении с применением различных схем питания обмоток возбуждения, обеспечивающих необходимый сдвиг тока по фазе. Наибольшее распространение получили схемы с независимым возбуждением, под которым понимается питание об-.моток возбуждения дигателей от вращающейся машины. В отличие от схемы локомотива постоянного тока, где мотор-генератор (возбудитель) необходим для получения тока низкого напряжения, в данном случае вращающаяся машина используется для смещения по фазе напряжения на обмотках возбуждения двигателей, работающих в генераторном режиме. В качестве возбудителя может быть применён индукционный фазопреобразователь или использован один или два тяговых двигателя.  [c.615]


Генератор ПН-750М постоянного тока представляет собой четырехполюсную машину с обмотками параллельного и независимого возбуждения. Обе обмотки располол ены на главных полюсах. Обмотка параллельного возбуждения создает основной магнитный поток при работе генератора, а обмотка независимого возбуждения, питаемая от аккумуляторной батареи напряжением 24 в, предназначена для ускорения возбуждения генератора после запуска дизеля и в начальный момент движения моторной платформы. Для включения обмотки независимого возбуждения от аккумуляторной батареи на щитке поста управления установлена кнопка подпитка .  [c.211]

К характеристикам, получаемым в системе при постоянном потоке двигателя и Ug-= = var (1—6, фиг. 19), обычно добавляются характеристики при постоянном напряжении генератора = onst и при переменном потоке возбуждения двигателя ф = уаг (7—13, фиг. 19). Эти характеристики используются для более высоких скоростей при расширении диапазона регулирования скорости. Строго говоря, они уже не будут параллельны характеристикам при Ug= var однако в масштабе графического изображения на фиг. 19 они могут считаться параллельными. Характеристики ниже оси абсцисс соответствуют обратному направлению вращения двигателя. Система Леонарда позволяет осуществить весьма плавное торможение с непрерывной рекуперацией энергии до самых малых скоростей. Переход от одной характеристики к другой при пуске производится постепенной перестановкой вручную или автоматически сначала реостата цепи возбуждения генератора (усиление его поля), а затем реостата цепи возбуждения двигателя (ослабление поля двигателя). Простота получения большого числа ступеней в цепи возбуждения генератора обеспечивает возможность исключительно плавного пуска электропривода. Торможение в ней производится в обратном порядке. Сначала повышается ток возбуждения двигателя до максимального значения, а потом уменьшается ток возбуждения генератора до минимального значения. При этом машина-двигатель почти всё время работает на генераторных тормозных характеристиках, так как э. д. с. двигателя оказывается больше э. д. с. генератора и ток идёт из двигателя в генератор.  [c.13]

В рассмотренной схеме электропривода системы Г — Д для лифта (фиг. 151) регулирование полем электродвигателя не предусмотрено, и механические характеристики соответствуют фиг. 152 для случая Ф = onst. На каждой из этих характеристик скорость привода не остается постоянной при изменении величины или направления нагрузки. Это говорит о том, что путь, проходимый кабиной лифта в процессе остановки, будет зависеть от величины и направления нагрузки. Чтобы исключить зависимость пути торможения от нагрузки, надо добиваться большей жесткости характеристик. Это одновременно позволяет расширить диапазон регулирования, который становится бесконечно большим, если механическая характеристика идет параллельно оси абсцисс (жесткость равна бесконечности). В реальных машинах сопротивление якорной цепи не может быть равно нулю, а жесткость бесконечности, и поэтому естественная характеристика всегда будет наклонена к оси абсцисс. Однако можно специальными средствами создать автоматически действующую в функции нагрузки компенсацию падения скорости. Для этого нужно, чтобы с ростом нагрузки автоматически увеличивалось возбуждение генератора Г с тем, чтобы соответственно увеличенное его напряжение покрывало возросшее от увеличенного тока падение напряжения в активном сопротивлении якорной цепи и от реакции якоря в обеих машинах. Мы приходим, Т.ЭКИМ образом, к заключению о необходимости ввести в систему электропривода регулирующее звено.  [c.272]


Смотреть страницы где упоминается термин Машины постоянного тока с параллельным возбуждением : [c.378]    [c.93]    [c.467]    [c.231]    [c.17]    [c.301]    [c.272]    [c.38]    [c.31]   
Справочник машиностроителя Том 2 (1955) -- [ c.383 ]



ПОИСК



Возбуждения

Машина постоянного тока

Постоянная машины

для постоянного тока



© 2025 Mash-xxl.info Реклама на сайте