Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свободные и вынужденные механические колебания

Применение уравнений Лагранжа к изучению свободных и вынужденных колебаний механических систем с конечным числом степеней свободы можно найти в ряде специальных курсов .  [c.344]

Части машин, движущиеся по определенным циклам, передают путем непосредственного соприкосновения или через упругую окружающую среду механические импульсы другим конструктивным элементам, подвергая их вынужденным колебаниям, частота которых может быть близка к частоте свободных колебаний этих элементов. Совпадение периодов или частот свободных и вынужденных колебаний обусловливает возможность теоретически неограниченного возрастания амплитуды колебаний. Это явление называется резонансом. Опасность резонанса заключается в интенсивном возрастании деформаций (амплитуды) и соответствующем нарастании напряжений.  [c.316]


Раздел IV посвящен построению линейной теории пластин приведены основные дифференциальные уравнения и энергетические соотношения. Обсуждаются приложения этой, теории к исследованию 1) статического механического нагружения 2) статической устойчивости 3) стационарного температурного воздействия 4) динамики пластин и, в частности, свободных и вынужденных колебаний, панельного флаттера и ударного воздействия.  [c.158]

Понятие о колебаниях. Свободные и вынужденные колебания. Вынуждающая сила. Колебательный процесс в механической системе характеризуется тем, что параметры конфигурации и (или) состояния системы, например, обобщенные коорди-  [c.61]

Если механическая система, действие которой на рассматриваемый редуктор отражено моментами и М , является линейной, то частные решения системы уравнений (2.1) при исследовании свободных и вынужденных колебаний можно искать в виде  [c.32]

Отличия настоящего издания книги от предыдущих (2-е изд. 1967 г.) состоят в следующем. Во-первых, в это издание включена специальная глава, посвященная теории удара в механических системах эта теория имеет большое практическое значение и по своему характеру близка к теории колебаний механических систем. Во-вторых, несколько расширено изложение теории свободных и вынужденных колебаний за счет привлечения особенно актуального материала (действие случайного возбуждения колебания аппарата на воздушной подушке). В-третьих, читатель найдет здесь значительно больше комментированных сведений о действующих стандартах и других нормативных документах, относящихся к колебаниям и вибрационной технике. Кроме того, в настоящем издании исправлены опечатки и мелкие погрешности изложения, вкравшиеся в предыдущее издание.  [c.3]

В работе [10] показано, что анализ форм свободных и вынужденных колебаний элементов механической системы может быть проведен с помощью так называемого топологического уравнения  [c.59]

Толчок к развитию и внедрению метода начальных параметров был дан А, Н, Крыловым (1931). С механической точки зрения этот метод применительно к стержням позволяет выразить внутренние усилия и перемещения в произвольном сечении х через внутренние усилия и перемещения в начальном сечении (и нагрузку, приложенную в интервале [О, х]) с формально математической точки зрения этот метод представляет собой сведение двухточечной краевой задачи к задаче Коши. В работах Н. И, Безу-хова (1938) метод начальных параметров был успешно применен к исследованию свободных и вынужденных колебаний стержней и стержневых систем.  [c.167]


Книга посвящена акустическим методам и средствам неразрушающего контроля и охватывает задачи дефектоскопии, контроля физико-механических свойств материалов, измерения размеров объектов контроля. Для обоснованного изложения методов и средств контроля в книге рассмотрены физические основы излучения, приема, распространения, отражения, преломления и дифракции акустических волн. Главное внимание уделено физике процессов, не применяется сложный математический аппарат. Основное внимание уделено методу отражения, получившему наиболее широкое распространение в практике неразрушающего контроля. Более кратко изложены методы прохождения, свободных и вынужденных колебаний, акустической эмиссии. Рассмотрено использование методов контроля металлов и сплавов (литья, поковок, проката, сварных соединений), неметаллов и многослойных конструкций. Для двух последних отмечается возможность использования специфических низкочастотных методов.  [c.3]

Экспериментальное определение частот свободных колебаний трубопроводов в судовых условиях. Для экспериментального определения частот свободных колебаний трубопроводов в судовых условиях может быть использовано несколько методов, в зависимости от конкретных условий величины ожидаемой частоты колебаний, размеров трубопровода, наличия свободного пространства для проведения эксперимента и др. Эти методы могут быть разбиты на две группы по свободным затухающим колебаниям и по вынужденным резонансным колебаниям. В первом случае возбуждение колебаний производится либо ударом резинового молотка по трубопроводу, либо путем статического нагружения трубопровода через проволоку сосредоточенной силой с последующим мгновенным снятием нагрузки перерезанием этой проволоки. Во втором случае в качестве возбудителя колебаний используются механические вибраторы или электромагниты переменного тока.  [c.221]

Полное решение задачи о вынужденных гармонических колебаниях механической системы содержит решение для свободных колебаний (1.3.4) и решение (1,4.17)  [c.19]

Вынужденные колебания механической системы с двумя степенями свободы. Если система с двумя степенями свободы находится под действием внешних сил, то колебания будут состоять из наложения, свободных затухающих колебаний и вынужденных. С течением времени свободные колебания полностью затухнут и система войдет в режим установившихся колебаний.  [c.43]

Малые колебания механической системы с одной степенью свободы. Потенциальная и кинетическая энергия системы при малых колебаниях вблизи положения устойчивого равновесия. Критерий устойчивости положения равновесия. Свободные, затухающие и вынужденные колебания гармонического осциллятора. Явление резонанса.  [c.150]

Дается изложение основ теории механических колебаний, которое опирается на общин курс теоретической механики и иллюстрируется рядом типовых примеров. Отличительной особенностью изложения является разделение материала по главам не по признаку числа степеней свободы механической системы, а по признаку общности рассматриваемых, колебательных явлений. В соответствии с этим в главах I—IV рассматриваются определенные типы колебательных явлений (свободные колебания, вынужденные колебания, параметрические колебания, автоколебания). Особое внимание уделяется нелинейным задачам.  [c.1]

Для правильного определения наименований и числа звеньев, с которых наиболее целесообразно снимать сигналы, необходимо знать природу возникающих в MP колебаний. Существуют работы по изучению колебательных процессов, в которых механические колебания делятся по форме и виду. Известны такие формы механических колебаний, как продольные, поперечные, изгибные, осевые, крутильные. Колебания также можно разделить по признакам и видам. Например, по энергии, питающей колебательную систему, колебания могут быть следующих видов свободные, вынужденные, параметрические, автоколебания, колебания от соударения упругих тел, случайные. Колебания можно различать по числу степеней свободы, характеру колеблющейся системы, закону изменения основных параметров и другим признакам.  [c.258]


Как отмечалось в первом томе, резонанс возникает при вынужденных колебаниях в результате притока энергии в систему извне. При особых условиях поглощения системой внешней механической энергии амплитуда возрастает, и возникает резонанс. В случаях, рассмотренных в первом томе, резонанс возникал, если период свободных или собственных колебаний совпадал с периодом возмущающей силы. Физически резонанс проявлялся в возрастании амплитуды вынужденных колебаний.  [c.308]

Рассмотрим сначала нерезонансный случай. Решение соответствую-ш его однородного уравнения (23.10.2) определяет свободные колебания. Однако они не представляют для нас интереса, поскольку в механической системе практически всегда имеется трение, и потому свободные колебания затухают. Частное решение, которое стремится к периодической функции с периодом 2п р, выражает вынужденное колебание. Вынужденное колебание малой амплитуды всегда суш ествует если же р п, то существуют два вынужденных колебания конечной амплитуды.  [c.481]

Для анализа влияния формы механической характеристики двигателя на затухание сводных колебаний и амплитуды моментов от вынужденных колебаний были проведены применительно к системе (7. 20) примерные расчеты, результаты которых представлены в табл. 7. 5 [14]. Для сравнения в таблице указаны также значения собственных частот свободных незатухающих колебаний  [c.268]

Уравнения второго порядка (234) и (235) отличаются от приведенного в начале этого параграфа уравнения, описывающего динамику механической системы без учета влияния электромагнитных процессов, происходящих в электродвигателе. Из уравнения (235) видно, что система с электродвигателем является колебательной. В такой системе возможен резонанс, если приведенный момент сил сопротивления представляет собой периодическую функцию времени. При совпадении частот вынужденных и свободных колебаний рассматриваемой системы, как и в случае механизма с упругим звеном, будет происходить явление резонанса угловой скорости.  [c.194]

Последний подблок обработки результатов интегрирования (см. рис. 106, в) предназначен для оценки притока и рассеяния энергии в режиме вынужденных колебаний, а в режиме свободных колебаний для контроля точности моделирования динамических процессов. В подблоке сопоставляются первые производные полной энергии каждого из главных направлений пространства по времени, которые получены в результате моделирования, с соответствующими компонентами векторов диссипативных функций, не участвовавшими в операциях моделирования динамических процессов дискретных механических систем.  [c.356]

В трех методах измерения динамических упругих свойств твердых тел, которые были рассмотрены, — свободные колебания, вынужденные колебания и распространение волн — упругие постоянные и внутреннее трение не могли бы быть выведены из измерений, если бы не были сделаны некоторые предположения о природе диссипативных сил и о линейности системы. Эти предположения заключались в том, что диссипативная сила пропорциональна скорости изменения деформации и что тип механического поведения не зависит от амплитуды деформации в области напряжений, использованных в опытах. Предполагая, что имеет место принцип суперпозиции Больцмана, можно было бы построить функцию памяти из серии экспериментов, проведенных во всей области частот, и отсюда сделать теоретический вывод о механическом поведении твердого тела, подверженного негармоническому воздействию напряжений.  [c.139]

Упруго-гистерезисные и усталостно-прочностные свойства резин можно определять на одних и тех же универсальных приборах. Практически выгоднее проводить раздельно кратковременные испытания по нахождению упруго-гистерезисных свойств и длительные испытания на усталостную выносливость. Основные методы испытаний подробно рассмотрены в работе [30]. При использовании этих методов для нахождения динамических характеристик резин следует иметь в виду, что последние характеризуют свойства резин при вынужденных колебаниях в стационарном режиме, когда инерционные эффекты и влияние скорости распространения и затухания волн в резиновых образцах пренебрежимо малы. Однако при измерениях параметров вынужденных колебаний в условиях резонанса, при ударных испытаниях и измерениях частоты и затухания свободных колебаний инерционными силами пренебрегать нельзя. Для описания механического поведения образцов в этих случаях пользуются дифференциальным уравнением движения системы с массой т с линейными с и вязкими Ь характеристиками  [c.41]

Прежде чем приступить к нахождению 5 и ф , заметим, что для механических колебательных систем не так просто с технической точки зрения осуществить воздействие гармонической силы непосредственно на движущуюся массу. Гораздо проще это сделать для электрических и оптических колебательных систем, например, для колебательного контура, подключенного к внешнему источнику переменного напряжения. Легко, однако, видеть, что можно поддерживать вынужденные колебания маятника, изображенного на рис. 2.1, иным способом, не прикладывая непосредственно внешнюю силу Д ) к массе т. Достаточно лишь эту силу приложить к левому концу свободной пружины так, чтобы этот конец двигался по гармоническому закону (1) = (рис. 2.2). Тогда удлинение  [c.28]


Основное дифференциальное уравнение и его решение, Изучение свободных колебаний представляет определенный интерес в связи с практическими задачами о движении механической системы после какого-либо воз-муш ения ее состояния равновесия. Однако не только этим определяется важность темы, которой посвяш ена настоянная глава. Дело в том, что характеристики свободных колебаний (собственные частоты и собственные формы) полностью определяют индивидуальные динамические свойства механической системы и имеют первостепенное значение также при анализе ее вынужденных колебаний.  [c.22]

В ряде случаев параметры механической системы - ее жесткость или масса - не остаются неизменными, а являются некоторыми заданными функциями времени, чаще периодическими. Если нарушить состояние равновесия такой системы, то будут происходить своеобразные колебания с одной стороны, их нельзя назвать свободными, так как система испытывает определенное внешнее воздействие в виде изменения жесткости, а с другой -они не являются вынужденными, так как внешнее воздействие не проявляется в виде заданной возмущающей силы. Эти колебания называются параметрическими и в зависимости от свойств системы и характера изменения ее параметров могут иметь ограниченные или возрастающие амплитуды, причем во втором случае возможно наступление параметрического резонанса.  [c.156]

Третье издание учебного пособия соаавлено в полном соответствии с новой программой курса Теория колебаний . Показано применение матриц к исследованию свободных и вынужденных колебаний систем. Включена глава, посвященная электромеханическим аналогиям и их применению к исследованию колебаний, в которой рассмотрено построение электрических моделей — аналогов механических систем. Рассмотрены принципы электрического моделирования механических систем.  [c.2]

В книге рассмотрены особенности физико-механических свойств стеклопластиков. Значительное место уделено законам упругости, ползучести и теориям прочности анизотропных материалов. Приведены основные соотношения для расчета напряжеиио-деформироваииого состояния анизотропных пластин и оболочек. Изложены вопросы свободных и вынужденных колебаний орто-тропных и анизотропных пластинок и оболочек.  [c.2]

Сведения из теории механических колебаний. Механическими колебаниями (сокращенно — колебаниями) называют двиясение механической системы, при котором хотя бы одна из обобщенных координат или их производных, поочередно возрастает и убывает во времени. Различают свободные колебания, происходящие без переменного внешнего воздействия и поступления энергии извне, и вынужденные, вызванные и поддерживаемые переменной во времени внешней силой.  [c.103]

Механические колебания в зависимости от причин, их вызывающих, можно разделить на четыре группы свободные, вынужденные, параметрические и автоколебания. К свободным относятся колебания, возникающие в механических системах в результате импульсного внешнего воздействия —толчка. Особенностью этих колебаний является то, что их характер после воздействия толчка определяется внутренними силами упругости — восста-1гпвливающнми силами, а энергия для возбуждения колебаний вводятся в ч истему извне.  [c.96]

Локальный метод свободных колебаний. Согласно этому методу (рис. 21, д) в части контролируемого изделия, например в слоистой панели, возбуждают механические колебания с помощью ударов молоточка вибратора и анализируют спектр возбуждаемых частот. В дефектных изделиях спектр, как правило, смещается в высокочастотную сторону. К этой же группе относится способ, получивший сокращенное название Предеф [50]. Сущность его состоит в возбуждении через слой жидкости вынужденных колебаний в стенке изделия с частотой, близкой к резонансной. После окончания возбуждения стенка продолжает колебаться в свободном режиме. По частоте этих свободных колебаний с очень высокой точностью измеряют ее толщину.  [c.203]

Основой экспериментов Кестера, представляющих интерес для настоящего обзора, явился остроумный прибор, описанный Фритцем Фёрстером (Forster [1937,1 ) в 1937 г. Целью было подвесить образец с помощью тонких проволочек таким образом, чтобы потери энергии в опорах или соединении опорных устройств и образца стали действительно пренебрежимыми. Были усовершенствованы различные конфигурации опор, допускающих протекание изгибных, крутильных и даже продольных колебаний параллелепипедов или цилиндров как вынужденных, так и свободных. Один из концов каждой из поддерживающих проволок был закреплен, а другой прикреплен к движущейся механической части электромагнитного преобразователя (датчика). Одна система служила как возбуждающая причина при вынужденных колебаниях, а другая как приемник. Установка позволяла определять также частоты свободных колебаний и параметр демпфирования. Статья содержала детальное описание различных рассмотренных конфигураций схем и обширное исследование многих проблем, с которыми пришлось столкнуться в процессе достижения необходимой точности измерения не только для определения модуля упругости Е, но и параметра резонансного демпфирования,— обеих величин как функций окружающей температуры.  [c.493]

Определив значения частот X свободных крутильных колебаний системы РУ сепаратора, можно оценить опасность возникновения резонанса. Если частоты Я отличаются от частоты и вынужденных колебаний (угловой скорости рабочего режима сепаратора) менее, чем на 30%, конструктор может на основе анализа выражений (10), (11) разработать конструктивные меры по повышению вибронадежности механической системы РУ (увод из резонансной зоны) или определить значения допустимых по вибронадежности скоростей со рабочих режимов сепаратора.  [c.425]

Выясним механический смысл найденного решения. Движение точки М будет складываться из двух колебательных движений из вынужденных колебаний с частотой свободных гармонических колебаний — х ш чисто вынужденных колебаний Х2, совершающихся с частотой возмущающей силы. Следует подчеркнуть, что начальные условия, т. е. положение и скорость точки М в начальный момент, влияют на амплитуду а и начальную фазу ф1 вынужденных колебаний Х и никак пе влияют на чисто вынужденные колебания хч. Из формулы (14.27) следует, что амплитуда и начальная фаза вынужденных ] олебаний х, происходящих с частотой свободных колебаний, зависят пе только от начальных условий, но и от параметров h, р тл tjjo, характеризующих возмущающую силу.  [c.268]

В Процессе исследования динамических характеристик металлорежущих станков возникают как задачи, связанные с большим количеством повторяющихся операций, выполнение которых целесообразно поручить ЭВМ, так и задачи, требующие осмысливания полученных результатов, обобщений, оценки путей дальнейшего продвижения, которые в настоящее время могут решаться только человеком [1]. К числу первых задач относятся составление уравнений движения механической системы станка, получение и анализ характеристического уравнения, установление форм свободных колебаний, исследование вынужденных колебаний системы, расчет передаточных функций, построение амплитудно-фазо-частотных характеристик (АФЧХ), анализ устойчивости системы.  [c.53]


Низшая частота рабочего диапазона частот определяется значениями о) > o)j. При меньшнх частотах для получения заданных ускорений необходимо увеличить входной сигнал и, следовательно, увеличить мощность усилительного устройства сверх ее номинального значения. Достаточно низкое значение o)j обеспечивается конструкцией подвески, имеющей малую жесткость. Верхняя граница рабочего диапазона частот определяется частотой 0)3. При больших частотах подводимая мощность оказывается недостаточной для получения заданного ускорения нз-за наличия антирезонансных зон в механической системе. Поэтому для расширения частотного диапазона вибровозбудителя конструкцию подвижной системы следует выполнять жесткой в осевом направлении. Наличие ребер и выступов, повышающих жесткость в осевом направлении, является во многих случаях нежелательным из-за возможности возникновения резонансных явлений при совпадении частот свободных колебаний этих частей подвижной системы с частотой вынуждающего воздействия. При воспроизведении параметров вибрации, задаваемых более сложными законами изменения ускорений, скоростей или перемещений в зависимости от изменения частоты вынужденной вибрации, а такнсе при воспроизведении полигармонической и случайной вибрации, общие принципы построения частотного диапазона вибровозбудителя остаются неизменными.  [c.275]

Для оценки уровня качества приборов применяют следующие типовые группы показателей качества назначения, надежности, технологичности, стандартизации, унификации, безвпасности, транспортабельности, экономические, эстетические, эргономические, экологические, патентно-правовые. В точном приборостроении определяющими показателями качества являются точность и надежность. Они должны быть обеспечены в заданных условиях эксплуатации, которые характеризуются воздействием факторов окружающей среды (температуры, давления, влажности, запыленности, солнечной радиации, электромагнитного излучения и т. д.) и механическими воздействиями (ускорениями, вибрацией). Различают вынужденную и свободную вибрацию механических устройств. Вынужденная вибрация возбуждается колебаниями основания, на котором установлена механическая система, свободная (собственная) вибрация — относительным перемещением элементов системы в процессе работы. Частоты вынужденной вибрации механической системы определяются частотами вибрации основания. Частоты собственной вибрации механической системы,  [c.633]

Методы собственных частот основаны на измерении этих частот (или спектров) колебаний контролируемых объектов. Собственные частоты измеряют при возбуждении в изделиях как вынужденных, так и свободных колебаний. Свободные колебания обычно возбуждают механическим ударом, вынужденные - воздействием гармонической силы меншощейся частоты.  [c.212]

Колебания в различных механических системах можно под-азделить на четыре класса свободные, вынужденные, пара-[етрические и автоколебания. Свободные колебания проис-одят в изолированной системе после внешнего возмущения.  [c.53]


Смотреть страницы где упоминается термин Свободные и вынужденные механические колебания : [c.4]    [c.240]    [c.149]    [c.70]   
Смотреть главы в:

Применение ультразвука в промышленности  -> Свободные и вынужденные механические колебания



ПОИСК



92, 102, 111, 121, 307, 309 —Вынужденные колебания 101—105 — Свободные колебания

Вынужденные механические колебания

Колебания вынужденные

Колебания вынужденные свободные

Колебания механические

Колебания свободные

Механические Колебания свободные



© 2025 Mash-xxl.info Реклама на сайте