Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы контроля металлов

Контроль трубопроводов, в соответствии с правилами [59, 60] и инструкцией [27] контролю и наблюдению в процессе эксплуатации подлежат все трубопроводы, коллекторы, трубы поверхностей нагрева, арматура, фасонные детали, фланцевые соединения и крепеж, работающие при температуре пара 450°С и выше. Металл трубопроводов с температурой среды от 250 до 450 °С с давлением 1,6 МПа и выше контролируется выборочно, с периодичностью не реже чем через каждые 100 тыс. ч эксплуатации, по вырезанным образцам. При приемке оборудования до и после монтажа, а также после ремонта электростанции контроль осуществляют в соответствии с [8], где определены объемы, периодичность и методы контроля металла паропроводов, питательных линий, котлов и турбин. Эксплуатационный контроль металла барабанов котлов регламентирован инструкцией [6].  [c.343]


Обследование и определение объема и методов контроля металла барабанов производят в соответствии с Временной инструкцией по обследованию состояния металла и условий эксплуатации барабанов котлов высокого давления (БТИ ОРГРЭС, 1966), Основными положениями по ультразвуковой дефектоскопии сварных соединений котлоагрегатов и трубопроводов тепловых Электростанций, ОП № 501 ЦД-75 (СПО, Союзтехэнерго, 1978) и ГОСТ 21105-75  [c.171]

При изложении материала по контролю металла отдельных элементов оборудования автором использованы литература и директивные материалы межотраслевого значения и директивные материалы, применяемые в энергетике. В то же время в отдельных отраслях промышленности имеются свои директивные материалы, предусматривающие контроль металла оборудования, эксплуатирующегося в специфических условиях. Особенности контроля в этих случаях, как правило, заключаются в регламентации периодичности и методов контроля. В то же время методы контроля металла практически остаются одинаковыми. Они изложены в справочнике.  [c.3]

Особенности возникновения повреждений в барабанах, связанные с высокими напряжениями, обусловливают и основные принципы повышения надежности барабанов снижение местных напряжений в зонах их концентрации и разработка методов контроля металла как при изготовлении, так и при эксплуатации.  [c.239]

В настоящее время используется целый ряд различных эксплуатационных методов контроля металла радиоактивного оборудования и трубопроводов. К ним относится также и температурный контроль толстостенных элементов оборудования ЯППУ. Задача этого контроля заключается в том, чтобы исключить такие эксплуатационные режимы, в том числе и в период переходных процессов, при которых возникает недопустимая разница по температуре металла различных участков одного и того же оборудования, определяемая технологическим регламентом и инструкциями.  [c.409]

Увеличение осевых нагрузок на рельсы, вызванное повышением скорости движения состава, требует повышения прочности рельсов. В связи с этим большое значение приобретают магнитные методы контроля металла без разрушения.  [c.307]

ИСПЫТАНИЕ НА УДАР (ударное испытание) — метод контроля металлов и сварных соединений, например соединений рельсов, па специальном оборудовании (копрах). И. па у. различают по виду деформации (изгиб, растяжение и т. п.), скорости нагружения, числу ударов, температуре, при которой они осуществляются.  [c.56]

Книга посвящена акустическим методам и средствам неразрушающего контроля и охватывает задачи дефектоскопии, контроля физико-механических свойств материалов, измерения размеров объектов контроля. Для обоснованного изложения методов и средств контроля в книге рассмотрены физические основы излучения, приема, распространения, отражения, преломления и дифракции акустических волн. Главное внимание уделено физике процессов, не применяется сложный математический аппарат. Основное внимание уделено методу отражения, получившему наиболее широкое распространение в практике неразрушающего контроля. Более кратко изложены методы прохождения, свободных и вынужденных колебаний, акустической эмиссии. Рассмотрено использование методов контроля металлов и сплавов (литья, поковок, проката, сварных соединений), неметаллов и многослойных конструкций. Для двух последних отмечается возможность использования специфических низкочастотных методов.  [c.3]


Для определения внутренних дефектов металла и сварных соединений (трещин, непроваров, включений) аппаратов и трубопроводов в основном применяют радиационный и ультразвуковые методы контроля, в более редких случаях  [c.184]

Радиационные и ультразвуковые методы являются регламентируемыми методами контроля качества металла и сварных соединений при изготов/гении и эксплуатации сварных сосудов, аппаратов и трубопроводов, работающих под внутренним давлением в соответствии с действующими НТД. Остальные методы контроля могут применяться часто как дополнительные.  [c.184]

ОСТ 26-5-88. Контроль неразрушающий. Цветной метод контроля сварных соединений, наплавленного и основного металла.  [c.267]

РД 24.200.04-90. Швы сварных соединений. Металлографический метод контроля основного металла и сварных соединений нефтехимической аппаратуры.  [c.268]

Метод контроля микроструктуры металла с помощью переносных микроскопов имеет ряд недостатков, из которых наиболее существенными являются невозможность осуществить контроль в местах, недоступных для установки микроскопа малое увеличение перенос гых микроскопов влияние окружающей среды на качество контроля (температура, осадки, загазованность и т.п.) необходимость пребывания в течение длительного времени специалистов-металловедов при неблагоприятных условиях функционирования на объекте и ряд других.  [c.322]

Метод контроля микроструктуры металла с помощью реплик исключает эти недостатки и позволяет оценивать микроструктуру сталей и сплавов на уровне традиционных металлографических методик.  [c.322]

Эффективным методом контроля фактического напряженно-деформированного состояния оборудования и конструкций, который получает все большее распространение на практике, является метод магнитной памяти металла (ММП). Основные принципы и критерии ММП изложены в отдельных работах Дубова А.А. и др..  [c.349]

Одним из наиболее перспективных методов контроля состояния соединительных трубопроводов является внутритрубная дефектоскопия [25, 30, 40-43]. В 1991-1995 гг. инспекцией по внутритрубной диагностике получены и систематизированы данные о состоянии металла соединительных трубопроводов, на основе которых была построена модель изменения количества их коррозионных повреждений на ближайшие 5 лет. При  [c.109]

Изменение размеров повреждений трубопровода устанавливают с помощью проведения дефектоскопии [25, 40, 42, 68, 86, 95, 96] (наружной — ежегодно и внутритрубной — раз в пять-восемь лет). Предотвращение возникновения и развития коррозионных повреждений металла обеспечивают ингибированием рабочей среды и электрохимической защитой трубопровода. Эффективность этих мероприятий оценивают посредством контроля коррозии [25, 33-35, 50, 55], а также методами неразрушающего контроля металла труб [25, 42, 67, 98-103].  [c.154]

Методы контроля пористости покрытий. Для определения Пористости покрытий используют методы погружения, паст и наложения фильтровальной бумаги, основанные на взаимодействии основного металла или металла подслоя с реагентом в местах пор с образованием окрашенных соединений.  [c.59]

Методы контроля прочности сцепления покрытий с покрываемым металлом основаны на различии физико-механических свойств металлов покрытия и основного металла. Используют количественные и качественные методы. Большинство методов позволяет получить лишь качественную оценку сцепления покрытия с основой. Методы контроля заключаются в визуальной оценке качества покрытия после его деформации изгибом, кручением, ударом, нанесением царапин, а также  [c.61]

Приведены сведения по электроосаждению металлических покрытий на различные металлы и сплавы. Описаны различные свойства покрытий, методы контроля их качества, указаны области применения. Рассмотрены широко известные и новые типы электролитов для осаждения металлов и сплавов, методы приготовления электролитов. Большое внимание уделено обработке поверхности материалов, от качества которой зависят как сам процесс нанесения покрытий, так и дальнейшая эксплуатация изделий.  [c.34]


При контроле для каждого дефекта независимо от его вида или типа может быть определен конкретный характеристический размер. При радиографии и электромагнитных методах контроля характеристическим размером является отношение глубины дефекта к толщине металла (безразмерная величина) при ультразвуковом контроле — эквивалентная площадь дефекта (мм ) или условный коэффициент выявляемости дефекта (безразмерная величина).  [c.12]

Существенный вклад сделан советскими учеными в области контроля качества сварных соединений. В 1929—1930 гг. в СССР С. Я. Соколовым впервые был разработан ультразвуковой метод контроля металлов. В довоенный и, особенно, в послевоенный периоды разработаны эффективные методы контроля с использованием рентгеновских лучей, излучений радиоактивных изотопов, магнитографии и т. д. (С. Т. Назаров, С. В. Румянцев, Н. В. Хим-ченко и др.). В последние годы советскими исследователями проводится разработка активных методов контроля, которые дают возможность не только обнаруживать, но и предотвращать возникновение дефектов в сварных соединениях непосредственно в процессе сварки.  [c.141]

Усталостные повреждения корпусных деталей, будучи незначительными, могут развиваться до сквозных трещин, создавая опасность разрушения. В связи с этим неразрушающие методы контроля металлов на тепловых электростанциях приобрели весьма важное значение. Существующие методы неразрушающего контроля можно классифицировать следующим образом тепловые методы с помощью инфракрасной аппаратуры, магнитные и электромагнитные методы, акустические методы (ультразвуковая дефектоскопия и метод акустической эмиссии), радиационные методы (радиография, ксерорадиография), метод проникающих жидкостей, метод травления химическими реактивами, гидравлические испытания и испытания сжатым газом.  [c.54]

Радиационные методы контроля являются надежными и широкораспространенными методами контроля, основанными на способности рентгеновского и гамма-излучения проникать через металл. Выявление дефектов при радиационном просвечивании основано на различном поглощении рентгеновского или гамма-излучения участками металла с дефектами и без них. Сварные соединения просвечивают специальными аппаратами. С одной стороны шва на некотором расстоянии от него помещают источники излучения, С противоположной стороны плотно поджимают кассету е чувствительной пленкой (рис. 79). При просвечивании лучи проходят  [c.149]

Выбор физического метода контроля без разрушен определяется характером получения необходимой информации, особенностями конгролируемого объекта и возможностью его применения в конкретных условиях. Применение любого метода НК для диагностирования сварных аппаратов осложняется отмеченными ранее спещ1фическими конструктивными и функциональными особенностями этих аппаратов. Прежде всего, следует обратить внимание на такую особенность аппаратов, например, колонной аппаратл -ры и сферических газгольдеров, как значительные поверхности диагностирования и большая при этом протяженность сварных швов. С другой стороны, для них характерны большие поверхности контакта металла с рабочей средой, которая часто может проявлять коррозионную и эрозионную активность.  [c.183]

НИ одним из известных физических методов контроля. Уста лостный излом всегда имеет две зоны разрушения усталостную с мелкозернистым, фарфоровидным, часто ступенчато-слоистым строением, иногда с отдельными участками блестящей, как бы шлифованной, поверхности и зону вязкого или хрупкого разрушения в зависимости от строения и свойств металла.  [c.308]

Совмещение испытаний с контролем металла методом акустической эмиссии (особенно при пневмоиспытании аппарата) представляет возможность исключить разгерметизацию и разрушение оборудования при испытаниях.  [c.331]

В условиях сероводородсодержащих месторождений косвенный метод контроля коррозионного состояния различных частей внутрискважинного оборудования по содержанию общего железа не позволяет получить достаточно объективную картину вследствие неравномерного коррозионного поражения металла. Это возможно только при капитальном ремонте скважин.  [c.177]

Перспективным представляется применение твердометрии как неразрушающего метода контроля, позволяющего оценивать механические свойства металла элементов фонтанной арматуры и колонных головок.  [c.178]

В отличие от методов просвечивания, ультразв>тсовые методы позволяют успешно выявлять именно трещиноподобные дефекты. Спецификой ультразвукового метода контроля является то, что он не дает конкретной информации о характере дефекта, так как на экране дефектоскопа появляется импульс, величина которого пропорциональна отражающей способности обнаруженного дефекта. Последняя зависит от многих факторов размеров дефекта, его геометрии и ориентации по отношению к направлению распространения ультразвуковых колебаний. В связи с тем, что эти параметры при контроле остаются неизвестными, обнар> -женные дефекты обычно характеризуются эквивалентной площадью, которая устанавливается в зависимости от интенсивности полученного сигнала Достоинствами л льтразвукового метода являются его меньшая по сравнению с методами просвечивания трудоемкость, а также возможность достаточно точного определения координат обнаруженного дефекта. Как показала практика применения ультразвукового метода, он не позволяет достаточно надежно обнаружить дефекты, лежащие вблизи поверхности изделия в связи с экранированием сигнала от дефекта сигналом ог поверхности. Это обстоятельство также необходимо ч читы-вать при практическом использовании данного метода контроля. Ультразвуковые методы используют как для контроля дефектов металла листов и поковок на стадии их изготовления, так и для контроля сварных соединений, для диагностики трубопроводного транспорта. На данном принципе созданы внутритрубные инспекционные снаряды (ВИС) — Ультраскан-СД, которые, двигаясь внутри трубы, считывают информацию о техническом состоянии трубопроводов. При этом фиксируется толщина стенки, коррозионные каверны, расслоения мета.лла, дефекты стресс-коррозионного происхождения.  [c.61]


Стандар 1 изаиня СНК обеспечивает повышение их технического уровня, качества и надежности, снижение металле- и энергоемкости, единообразие и достоверность результатов измерений, испытаний и контроля за счет установления оптимальных методов контроля, разработки методик нераз-рушающего контроля, классификации дефектов и устаиовлеиип критериев их допустимости, развития унификации и типизации технологических про- цессов контроля, определения основных показателей качества СНК, метрологического обеспечения НК.  [c.21]

Для непрерывного контроля толщины покрытий на металле применен радиоволновой толщиномер СТ-21 И при этом используется амплитуднофазовый метод контроля с фазовой отстройкой от влияния кривизны контролируемой поверхности за счет несимметричной установки опоры относительно оси антенны толщиномера.  [c.260]

Эхо-метод применяют для обнаружения грубых дефектов в слитках из различных металлов и сплавов, предназначенных для изготовления ответственных изделий. Простая форма слитка благоприятствует контролю. Однако слитки имеют крупнозернистую структуру, что требует снижения частоты и снижает чувствительность метода контроля. Слитки из углеродистой стали могут быть прозвучены на толш,ину до 1 мм при частоте 0,25— 1 МГц. Слитки из легированной стали прозвучиваются значительно хуже. Слитки из титановых и алюминиевых сплавов могут быть проконтролированы на глубину более 1 м при частоте 1 —1,5 МГц. Для обеспечения акустического контакта вдоль боковых поверхностей слитка зачищают полосы шириной 50—70 мм от окалины и других неровностей.  [c.256]

В разработанных в СССР струк-туромерах используется относительный метод контроля структуры, основанный на прозвучивании металла на различных частотах. При этом одну из частот (опорную) выбирают низкой, так что затухание УЗК в небольшой степени зависит от структурных составляющих. Другие частоты (рабочие) соответствуют рэлеевской области рассеяния. Отношения амплитуд дониых сигналов, соответствующих рабочим и опорной частотам, называемые структурными коэффициентами, определяют на исследуемом изделии для различных рабочих частот и сравнивают со структурными коэффициентами, полученными на образцах.  [c.282]


Смотреть страницы где упоминается термин Методы контроля металлов : [c.105]    [c.493]    [c.260]    [c.458]    [c.541]    [c.174]    [c.26]    [c.176]    [c.196]    [c.59]    [c.72]    [c.17]    [c.254]    [c.187]    [c.324]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.0 ]



ПОИСК



Контроль металла

Методы контроля



© 2025 Mash-xxl.info Реклама на сайте