Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Асинхронные Торможение

При спуске тяжелых грузов главный двигатель может быть выключен, а толкатель подсоединен к датчику частоты, что обеспечивает плавное притормаживание шкива и обеспечивает нормальную скорость. По этой электросхеме можно комбинировать торможение противотоком с механическим торможением, что несколько разгружает тормоз и увеличивает диапазон регулирования скорости на ступенях ниже асинхронной скорости.  [c.339]

Динамические нагрузки при пуске и торможении привода с асинхронным двигателем. Математическая модель асинхронного электродвигателя, воспроизводящая его нелинейную статиче-  [c.97]


Рис. 8. Механические характеристики асинхронного двигателя МКА-14 в режиме динамического торможения Рис. 8. <a href="/info/76194">Механические характеристики асинхронного двигателя</a> МКА-14 в режиме динамического торможения
Рассмотрим движение машины, приводимой асинхронным двигателем с нормальным ротором, при торможении, вызванном внезапным значительным возрастанием внешнего статического момента сопротивления.  [c.419]

Рис. 5.111. Тормоз с автоматическим регулированием скорости при спуске груза. Автоматическое регулирование скорости опускающегося груза осуществляется вспомогательным асинхронным балансир-двигателем М (схема а), якорь которого соединен с валом 1 тормозного диска 3. Статор двигателя М, установленный в подшипниках поддерживающих кронштейнов, соединяется с тормозом системой звеньев 6, 7 и 8 (схема б). Полное торможение диска 3 обеспечивается пружиной 5. При опускании груза включается вспомогательный двигатель М, якорь которого вращаться не может, так как жестко соединен с тормозным диском. Вследствие этого статор двигателя М стремится вращаться в сторону, противоположную моменту якоря, и посредством звеньев б, 7, 8 растормаживает тормоз. Рис. 5.111. Тормоз с <a href="/info/432335">автоматическим регулированием скорости</a> при спуске груза. <a href="/info/432335">Автоматическое регулирование скорости</a> опускающегося груза осуществляется вспомогательным асинхронным балансир-двигателем М (схема а), якорь которого соединен с валом 1 <a href="/info/250785">тормозного диска</a> 3. Статор двигателя М, установленный в подшипниках поддерживающих кронштейнов, соединяется с <a href="/info/266862">тормозом системой</a> звеньев 6, 7 и 8 (схема б). Полное торможение диска 3 обеспечивается пружиной 5. При опускании груза включается <a href="/info/400681">вспомогательный двигатель</a> М, якорь которого вращаться не может, так как <a href="/info/681282">жестко соединен</a> с <a href="/info/250785">тормозным диском</a>. Вследствие этого статор двигателя М стремится вращаться в сторону, противоположную моменту якоря, и посредством звеньев б, 7, 8 растормаживает тормоз.
Выбрав тип и габарит двигателя, намечают по каталогу его механические характеристики— пусковые, тормозные, регулировочные, рабочие, соответственно фиксируя число ступеней пуска, торможения, регулирования скорости. Попутно решают вопрос о роде управления, которое может быть автоматическим, полуавтоматическим, ручным. Последнее в современной практике по условиям производительности, качества продукции, надёжности, расхода энергии и т. п. почти не применяется. Выбирая характеристики двигателя, тем самым намечают схему включения главных цепей двигателя якоря и обмотки возбуждения в машинах постоянного тока, статора и ротора — в асинхронных машинах.  [c.3]


Тормозные характеристики асинхронных двигателей. Торможение асинхронных двигателей в основном можно производить тремя методами 1) противовключением 2) рекуперативным торможением при работе машины как асинхронного генератора выше синхронной скорости 3) динамическим торможением, т.е.  [c.17]

Для торможения машина переключается на другое число полюсов и с первой характеристики переходит на вторую, попадая в генераторный режим. При снижении скорости привода от точки Ь до точки с машина будет давать торможение, работая как асинхронный генератор. Далее, для полной остановки, от точки г до переходят на противовключение.  [c.17]

Торможение синхронных двигателей практически можно осуществить лишь двумя способами—противовключением как асинхронного и динамическим торможением. Из-за больших толчков тока в сети противовключение применяется очень редко, преимущественно в приводах непрерывных прокатных заготовочных станов с последующим реверсом для вытягивания застрявшей раскатки. При динамическом торможении отключённая от сети обмотка статора машины, возбуждённой со стороны ротора постоянным током, включается на особый реостат. Рекуперативная работа на сеть в качестве синхронного генератора возможна лишь при синхронной скорости, а потому практического значения для торможения электропривода в обычных схемах не имеет.  [c.18]

Купроксные выпрямители. Купроксные выпрямители служат для выпрямления переменного тока и используются для подачи полученного постоянного тока в схемы управления двигателями или в цепь асинхронных двигателей при динамическом торможении.  [c.52]

В СССР наибольшее распространение получили селеновые и купроксные выпрямители, которые применяются для зарядки аккумуляторных батарей, для питания электролитических ванн, для питания цепей управления электромагнитной аппаратуры, для получения постоянного тока при динамическом торможении асинхронных двигателей и т. д.  [c.370]

На фиг. 13 приведены механические характеристики асинхронного двигатели с фазовым ротором для двигательного режима и режимов противовключения и рекуперативного торможения. В пределах от М = О до М 0,75Л/д можно  [c.415]

Реле контроля скорости типа РКС предназначено для управления торможением противовключением асинхронных электродвигателей с короткозамкнутым  [c.435]

Торможение асинхронных двигателей 415  [c.553]

Потенциал 330 Электрическое торможение 410 Электродвигатели—см. также Асинхронные двигатели Двигатели постоян-  [c.557]

Фиг. 17. Схема включения обмоток статора при динамическом торможении асинхронных двигателей. Фиг. 17. <a href="/info/440147">Схема включения</a> обмоток статора при <a href="/info/305364">динамическом торможении</a> асинхронных двигателей.
Фиг. 18. Характеристики динамического торможения асинхронных двигателей. Фиг. 18. <a href="/info/146686">Характеристики динамического</a> торможения асинхронных двигателей.
При отключении обмотки возбуждения от сети о. в. г. (обмотка возбуждения генератора) оказывается замкнутой на разрядное сопротивление СР. Ток возбуждения, а следовательно, и э. д. с. генератора уменьшается, э. д. с. двигателя становится больше э. д. с. генератора, и направление тока в главной цепи меняется на обратное двигатель работает в режиме генератора, генератор Г — в режиме двигателя и вращает двигатель агрегата ДА. Последний теперь работает в режиме асинхронного или синхронного генератора и отдает энергию в сеть. Таким образом происходит быстрое торможение двигателя Д.  [c.518]


Электросопротивление 433, 434 Торможение асинхронных двигателей 508,  [c.734]

Предназначен для дистанционного реверсивного управления в качестве контактного пускового устройства исполнительных механизмов с асинхронным трехфазным электродвигателем с короткозамкнутым ротором. Обеспечивает включение, отключение и торможение двигателем исполнительных механизмов после снятия напряжения управления. Мощность управления <4 Вт. Напряжение на втягивающих катушках 24 В постоянного тока или 220 В переменного тока. Мощность управляемого электродвигателя 0,27 кВт. Коммутируемое напряжение — трехфазная сеть переменного тока, 380/220 В.  [c.779]

Для электропривода подъемной лебедки лифта используется двухскоростной асинхронный двигатель MI с соотнощением чисел пар полюсов 1 3. Разгон электропривода подъемной лебедки до номинальной скорости вращения осуществляется включением обмотки номинальной скорости. При замедлении кабины включаются обмотки малой скорости, и электропривод переходит в режим рекуперативного генераторного торможения. После перехода на пониженную скорость лебедка останавливается путем наложения механического тормоза с электромагнитным приводом YB.  [c.14]

Для питания асинхронных двигателей трехфазным напряжением регулируемой амплитуды и частоты, что позволяет плавно регулировать их частоту вращения в диапазоне 1 12 при постоянном моменте, равном номинальному моменту двигателя. Преобразователь обеспечивает плавный пуск и частотное торможение без рекуперации энергии в сеть.  [c.220]

Электрическое торможение асинхронного электродвигателя различными способами. Регулирование скорости асинхронного электродвигателя. Однофазный и двухфазный асинхронные электродвигатели.  [c.326]

Разбор различных схем управления асинхронными, синхронными электродвигателями и электродвигателями постоянного тока (пуск, реверсирование, торможение, регулировка скорости и т. д.). Сведения о станциях управления.  [c.327]

Магнитные контроллеры (МК) (см. п. II.5) Переменный (см. табл. П.1.25) Асинхронные электродвигатели с фазным ротором с резисторами в цепи ротора, используемые на механизмах передвижения и подъема На механизмах передвижения применяется электропривод с регулированием скорости включением в цепь ротора встречного напряжения и изменением сопротивлений резисторов в этой цепи и импульсно-ключевой способ регулирования. На механизмах подъема устанавливается электропривод с динамическим торможением-с самовозбуждением, имеющий жесткие характеристики в режиме спуска Ступенчатое Мостовые, козловые, портальные, башенные, контейнерные краны краны  [c.225]

С кулачковым контроллером С магнитным контроллером пере менного тока и диапазоном регу лирования 1 4 С магнитным контроллером переменного тока с динамическим торможением или источником встречного напряжения С магнитным контроллером постоянного тока С магнитным контроллером и асинхронным короткозамкнутым двигателем Система Г—Д Система УВ—Д  [c.232]

Эти выпрямители предназначены для выпрямления переменного тока в постоянный, который применяют на башенных кранах для питания обмоток возбуждения тормозных машин и тормозных электромагнитов, цепей управления катушек контакторов и цепей управления магнитных усилителей, для динамического торможения асинхронных двигателей, а также для питания цепей ограничителей грузоподъемности и анемометра.  [c.143]

Разработана новая схема электропривода с асинхронной тормозной машиной и динамическим торможением (рис. 80).  [c.152]

Недостатком этого способа запуска является уменьшение пускового и максимального моментов двигателя, которые пропорциональны квадрату напряжения. Поэтому их можно использовать при запуске двигателе без нагрузки. Регулирование частоты вращения асинхронных двигателей выполняют изменением частоты тока /, числа полюсов и скольжения, которое обычно меняют включением реостата в цепь ротора или изменением напряжения. Торможение электродвигателя можно осуществлять переключением в генераторный режим, переводом в режим электромагнитного или динамического торможения. Для изменения направления вращения ротора электродвигателя меняют направление вращения магнитного поля, которое производят переключением любых двух внешних фаз электродвигателя.  [c.58]

В детандерах применяются различные способы торможения. Выбор способа торможения в значительной степени определяется развиваемой мощностью. Наиболее экономичен широко распространенный способ торможения асинхронным генератором с выработкой электроэнергии, возвращаемой в сеть, Меньше используются способы торможения газовыми и масляными тормозами,  [c.351]

При торможении противовключением асинхронных коротко-замкнутых двигателей динамический момент может превысить критический момент с затухшим полем ротора в 2—2,3 раза, а с незатухшим — в 3—5 раз.  [c.22]

Как будет показано ниже, принятое допущение соответствует замене первого участка характеристики параболой. Сравнение приближенного аналитического решения и проведенного с высокой точностью численного решения уравнения движения показывает, что принятое допущение вносит погрешность не выше 0,5—1% при значительном упрощении решения. Этот, вообще говоря, частный прием может быть с успехом применен при исследовании переходного процесса резкого аварийного торможения рабочего оргона в различных машинах, приводимых от асинхронных двигателей. В некоторых случаях оказывается более удобным считать, что ускорение меняется по квадратичной зависимости [65].  [c.388]


В данной отатье рассматривается параметрическая чувствительность в режиме торможения объекта, состоящего из двух рабочих секций, связанных участком главного вала. Параметрическая чувствительность объекта характеризует изменение значений крутящих моментов в элементах привода при одном изменяющаяся параметре машины и неизменных остальных. Изменяемыми параметрами машин являются, надфимер, моменты инерции рабочих органов и их угловые скорости в начале торможения, значения и характеристики тормозных моментов. В изолировочных машинах по условиям технологического процесса обмотчики могут вращаться с разными угловыми скоростями в уст Ковивпемся режиме. Их моменты инерции отличаются друг от друга вз-за неодинакового количества бумажных рулонов, установленных в каждой секции. Конструктивные особенности и техническое состояние тормозов приводят к асинхронному их включения, характеризуемому временем "запаздывания" Z (ряс, I). По  [c.78]

Решение системы (3) ведется до тех пор, пока не станет равной нулю. Выражения (2), (4), полученные, для определения значений крутящих моментов и угловых скоростей рабочих органов, яб-ляптся базовыми при оценке параметрической чувствительности двухсекционной машины. Методика оценки заюпвчаетоя в том, что один из таких параметров машины, как значение тормозных моментов, моменты инерции рабочих органов, начальные деформации и угловые скорости режима торможения, а также асинхронность в приложении тормозных моментов, изменяется, а остальные соответственше параметры остаются одинаковыми.  [c.82]

Сравнение видов электрического торможения. Рекуперативное торможение можно применять в шунтовых двигателях постоянного тока с регулированием скорости током возбуждения и в короткозамкнутых асинхронных Двигателях с переключением полюсов. Выбор между противовключеняем и динамическим торможением зависит от требуемой быстроты торможения и точности остановки при одинаковых исходных токах в якоре торможение противовключением более эффективно, так как тормозной момент при противо-включении меняется мало, а при динамическом торможении спадает до нуля. Динамическое торможение практически считается наиболее точным. Для реверсивных приводов чаще применяют противовключение, для нереверсивных— динамическое, так как схема последнего проще.  [c.8]

Выбор рода тока для электроприводов. На районных электрических станциях энергия генерируется в форме переменного тока и на промышленные предприятия подаётся трёхфазный ток. Поэтому во всех случаях, где применение двигателей постоянного тока не вызывается производственной необходимостью, следует устанавливать электродвигатели трёхфазного тока. Потребность в двигателях постоянного тока может возникать I) при широком и плавном регулировании скорости, 2) при большом числе пусков в час и вообще при напряжённом повторно-кратковременном режиме 3) при работе электроприводов по специальному графику скорости, пути 4) при необходимости в особой плавности пуска и торможении, перехода от одного рабочего процесса к другому 5) при необходимости кроме основных, рабочих, получить и заправочные скорости механизмов. Краткое сопоставление различных электрических типов электродвигателей в отношении регулирования скорости дано в табл. 4, из которой видно, что во всех тех случаях, где требуется плавное регулирование скорости в пределах 1 3 и выше, наиболее целесообразно применять двигатели постоянного тока или систему Леонарда, а в малых мощностях электронноионный привод. Последний в эксплоатационном отношении достаточно не изучен. При ступенчатом регулировании до 1 4 преимущественно при малых мощностях (особенно в металлорежущих станках) могут быть использованы короткозамкнутые асинхронные двигатели с переключением полюсов. Коллекторные двигатели переменного тока в указанных пределах экономичны в основном лишь при установке  [c.20]

Для лифтов применяют различные системы электропривода в зависимости от номинальной рабочей скорости лифта, требуемой точности остановки кабины, необходимой плавности работы нри разгоне и торможении, стоимости изготовления и эксплуатации электропривода и т.п. Чаще всего для лифтов используют электроприводы переменного тока с односкоростными и двухскоростными короткозамкнутыми асинхронными двигателями и электроприводы постоянного тока с управляемыми преобразователями. Кроме того системы управления лифтами различаются по ряду других признаков. Например, лифты бывают с ручным и автоматическим приводом дверей кабины и щахты. В зависимости от очередности выполнения вызовов кабины различают лифты без выполнения нонутных вызовов, с выполнением нонутных вызовов вниз и с выполнением нонутных вызовов как  [c.4]

Привод подачи для станков с ЧПУ. В качестве привода используют двигатели, представляющие собой управляемые от цифровых преобразователей синхронные или асинхронные машины. Бескол-лекторные синхронные (вентильные) двигатели для станков с ЧПУ изготовляют с постоянным магнитом на основе редкоземельных элементов и оснащают датчиками обратной связи и тормозами. Асинхронные двигатели применяют реже, чем синхронные. Привод движения подач характеризуется минимально возможными зазорами, малым временем разгона и торможения, небольшими силами трения, уменьшенным нагревом элементов привода, большим диапазоном регулирования. Обеспечение этих характеристик возможно благодаря применению шариковых и гидростатических винтовых передач, направляющих качения и гидростатических направляющих, беззазорных редукторов с короткими кинематическими цепями и т.д.  [c.275]

Принципиальная схема вискозиметра представлена на рис. ПО. Исследуемый материал подвергается сдвигу в зазоре между внутренним цилиндром 1 и наружным цилиндром 2. Цилиндр 1 приводится во вращение от асинхронного электродвигателя переменного тока мощностью 1 кет. Между электродвигателем и наружным цилиндром установлены две электромагнитные муфты, семиступенчатая коробка перемены передач и червячный редуктор 7, Передаточное отношение каждой ступени семиступенчатого редуктора равно трем. Одна электромагнитная муфта предназначена для быстрого включения и мгновенного сообщения скорости внутреннему цилиндру, а другая — для быстрого его торможения. Количество заправляемого материала в прибор составляет 1 ott . Утечка исследуемого материала через зазор между цилиндрами предотвращается фторопластовым уплотнением и втулкой S. Внутрь цилиндра 1 через трубопровод нагнетается термостатируюш.ая жидкость, которая отводится через внутреннюю полость вала 9. Шарикоподшипники редуктора 6 установлены на теплоизоляционных втулках 10, предотвращающих отвод тепла от зоны сдвига исследуемого материала.  [c.192]

Для управления с помощью сигналов логических элементов Логика Т трехфазными асинхронными электродвигателями с короткозамкнутым ротором мощностью до 40 кВт при питающем напряжении 220 или 380 В с частотой 50 и 60 Гц. Обеспечивают пуск, останов, реверс, динамическое и двухтоковэе торможение и режим противовключения двигателя. Выпускаются взамен релейно-контактных станций управления типа БУ-5000 и ПУ-5000.  [c.181]


Проверка по длительности технологического цикла или по допускаемой работе. Кривошипные прессы и автоматы оборудованы маховичным приводом с асинхронным электродвигателем, номинальная мощность которого меньше мгновенной мощности рабочего хода. Дополнительный приток энергии получают за счет торможения маховнка. В связи с этнм возникает необходимость в разгоне маховика электродвигателем к началу каждого следующего рабочего хода в противном случае вследствие исчерпания запаса энергии в маховике машина после совершения некоторого числа рабочих ходов остановится. Величина торможении, т. е. расход кинетической энергии маховика, зависит от работы иа пластическое формоизменение, треиие в шарнирах и направляющих, иа включение муфты и др. Поэтому иа прессе или автомате можно осуще-  [c.514]

Такая система в литературе обычно называется системой путевого контроля, однако правильнее ее назвать рефлекторной, так как в отдельных узлах схем применяется автоматическое управление давлением, скоростью, факт11ческим размером обрабатываемого изделия и т. п., т. е. командный импульс может поступить не только от положения рабочих органов. Управление давлением применяется, например, в зажимных устройствах (при работе до жесткого упора) и в системах смазки. Элементом управления в этом случае является реле давления. Управление скоростью применяется при автоматизации процессов торможения асинхронных двигателей, для контроля вращения режущего инструмента и контроля снижения скорости при индексации (фиксированный останов стола, шпинделя). Управление осуществляется при помощи реле скорости.  [c.26]


Смотреть страницы где упоминается термин Асинхронные Торможение : [c.36]    [c.439]    [c.538]    [c.543]    [c.297]    [c.777]    [c.327]    [c.76]   
Справочник машиностроителя Том 2 (1955) -- [ c.415 ]

Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.508 , c.509 ]



ПОИСК



5.206— 211 — Торможени

Асинхронные Средний пусковой момент 522 Схема типовая 543 — Схема торможения 543, 544 — Технические данные 486, 488, 529 — Управление реверсивное

Механические характеристики асинхронных электродвигателей в режимах динамического торможения

Механические характеристики асинхронных электродвигателей в режимах динамического торможения в системах импульсного регулирования

Механические характеристики асинхронных электродвигателей в режимах динамического торможения параметрического регулирования

Механические характеристики асинхронных электродвигателей в режимах динамического торможения фазового регулирвания

Механические характеристики асинхронных электродвигателей в режимах динамического торможения частотного регулирования

Особенности работы асинхронного двигателя в режиме динамического торможения с самовозбуждением

Расчет механических характеристик асинхронных двигателей в режиме динамического торможения

Расчет механических характеристик асинхронных двигателей с фазным ротором в режиме динамического торможения с самовозбуждением по универсальным кривым (метод завода Динамо)

Расчет механических характеристик динамического торможения асинхронного двигателя при питании его обмоток от отдельного источника по несимметричным схемам включения

Расчет сопротивления динамического торможения асинхронных двигателей с фазным ротором

Расчет характеристик асинхронных короткозамкнутых двигателей при симметричных схемах динамического торможения

Торможение

Торможение асинхронных двигателе

Торможение асинхронных двигателе в системе генератор — двигател

Торможение асинхронных двигателе динамическое краново-металлургических двигателей

Торможение асинхронных двигателе электрическое

Торможение асинхронных двигателей двигателей постоянного тока динамическое — Схемы

Торможение асинхронных двигателей постоянного тока параллельного возбуждения — Схема

Торможение асинхронных электродвигателей

Торможение — Испытания асинхронных двигателей

Электроприводы с регулированием сопротивления в цепи ротора асинхронных двигателей и торможением противовключением



© 2025 Mash-xxl.info Реклама на сайте