Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Асинхронные Регулирование скорости

С плавным регулированием скорости до отношения 2 1 при постоянном моменте или до отношения 4 1 при вентиляторном моменте Асинхронные электродвигатели с фазным ротором, с реостатным регулированием в цепи ротора Механизмы передвижения и подъема кранов, вспомогательные механ измы прокатных цехов, экскаваторы, вентиляторы, дымососы, насосы, требующие регулирования производительности, подъемные машины  [c.125]


При спуске тяжелых грузов главный двигатель может быть выключен, а толкатель подсоединен к датчику частоты, что обеспечивает плавное притормаживание шкива и обеспечивает нормальную скорость. По этой электросхеме можно комбинировать торможение противотоком с механическим торможением, что несколько разгружает тормоз и увеличивает диапазон регулирования скорости на ступенях ниже асинхронной скорости.  [c.339]

Машины, потребляющие сравнительно небольшую мощность (обычно в пределах 100—120 кет) и не требующие по технологии выполняемых операций регулирования скорости вращения двигателя, обычно приводятся асинхронными двигателями с коротко-  [c.36]

Рис. 5.111. Тормоз с автоматическим регулированием скорости при спуске груза. Автоматическое регулирование скорости опускающегося груза осуществляется вспомогательным асинхронным балансир-двигателем М (схема а), якорь которого соединен с валом 1 тормозного диска 3. Статор двигателя М, установленный в подшипниках поддерживающих кронштейнов, соединяется с тормозом системой звеньев 6, 7 и 8 (схема б). Полное торможение диска 3 обеспечивается пружиной 5. При опускании груза включается вспомогательный двигатель М, якорь которого вращаться не может, так как жестко соединен с тормозным диском. Вследствие этого статор двигателя М стремится вращаться в сторону, противоположную моменту якоря, и посредством звеньев б, 7, 8 растормаживает тормоз. Рис. 5.111. Тормоз с <a href="/info/432335">автоматическим регулированием скорости</a> при спуске груза. <a href="/info/432335">Автоматическое регулирование скорости</a> опускающегося груза осуществляется вспомогательным асинхронным балансир-двигателем М (схема а), якорь которого соединен с валом 1 <a href="/info/250785">тормозного диска</a> 3. Статор двигателя М, установленный в подшипниках поддерживающих кронштейнов, соединяется с <a href="/info/266862">тормозом системой</a> звеньев 6, 7 и 8 (схема б). Полное торможение диска 3 обеспечивается пружиной 5. При опускании груза включается <a href="/info/400681">вспомогательный двигатель</a> М, якорь которого вращаться не может, так как <a href="/info/681282">жестко соединен</a> с <a href="/info/250785">тормозным диском</a>. Вследствие этого статор двигателя М стремится вращаться в сторону, противоположную моменту якоря, и посредством звеньев б, 7, 8 растормаживает тормоз.
Регулирование скорости асинхронных двигателей  [c.539]

ХАРАКТЕРИСТИКИ И РЕГУЛИРОВАНИЕ СКОРОСТИ ЭЛЕКТРОПОДВИЖНОГО СОСТАВА С АСИНХРОННЫМИ ДВИГАТЕЛЯМИ  [c.455]

Выбрав тип и габарит двигателя, намечают по каталогу его механические характеристики— пусковые, тормозные, регулировочные, рабочие, соответственно фиксируя число ступеней пуска, торможения, регулирования скорости. Попутно решают вопрос о роде управления, которое может быть автоматическим, полуавтоматическим, ручным. Последнее в современной практике по условиям производительности, качества продукции, надёжности, расхода энергии и т. п. почти не применяется. Выбирая характеристики двигателя, тем самым намечают схему включения главных цепей двигателя якоря и обмотки возбуждения в машинах постоянного тока, статора и ротора — в асинхронных машинах.  [c.3]


Регулирующие р еос тэты служат для длительного регулирования скорости двигателя изменением сопротивления в цепи якоря двигателей постоянного тока и в цепи ротора асинхронных двигателей.  [c.49]

Для прокатных станов современного типа применяется электрический двигатель переменного или постоянного тока. В тех случаях, когда не требуется регулирования скорости прокатки, как правило, применяются электродвигатели переменного тока синхронные при работе без маховика и асинхронные при работе с маховиком или когда мощность двигателя невелика. Электродвигатели постоянного тока устанавливаются лишь тогда, когда необходимо регулировать скорость прокатки.  [c.850]

Привод. У дисковых ножниц в качестве привода обычно служит асинхронный двигатель, а когда требуется регулирование скорости резания — шунтовой двигатель.  [c.985]

Для механизмов с длительной работой, не требующих регулирования скорости, применяются асинхронные, чаще всего коротко-замкнутые двигатели 380 в напряжения, при необходимости же в регулировании скорости применяют шунтовые двигатели постоянного тока. Двигатели для вспомогательных механизмов выбираются закрытыми. Двигатели постоянного тока вспомогательных механизмов получают постоянный ток от двигателя генератора или от ртутных выпрямителей.  [c.1059]

Для привода станов холодной прокатки применяют двигатели постоянного тока и асинхронные двигатели. Для станов небольшой производительности с узким сортаментом прокатываемых полос, не требующих точной установки натяжения полосы, могут быть применены асинхронные двигатели. Для станов большой производительности применяют шун-товые двигатели постоянного тока, достоинствами которых являются возможность прокатки широкого сортамента поддерживание определённого натяжения полосы электрическим путём возможность получения небольшой скорости полосы при заправке и т. д. Шунтовой двигатель с регулированием скорости путём изменения потока возбуждения соответствует условиям работы станов холодной прокатки, у которых более узкие полосы, требующие небольшого момента, обычно прокатываются с большой скоростью.  [c.1068]

Шунтовые двигатели постоянного тока значительно сложнее, дороже и тяжелее асинхронных (короткозамкнутых) их целесообразно применять лишь в тех случаях, когда требуется широкое и плавное регулирование скорости.  [c.143]

Асинхронные электродвигатели с контактными кольцами (без реостатного регулирования скорости и без использования противо-включения)  [c.842]

Асинхронные электродвигатели с контактными кольцами с регулированием скорости  [c.842]

Регулирование скоростей крановых механизмов и получение малых скоростей для точной остановки лифтов, монорельсовых тележек, тельферов и т. п. при переменном токе обеспечивается также дополнительной подачей постоянного тока от преобразователя при включении статора открытым треугольником. В этом случае возможно изменение механических характеристик сопротивлениями цепей постоянного тока и сопротивлениями роторной цепи. Регулировочные характеристики асинхронного двигателя для этой системы, показанные на фиг. 6, обеспечивают по сравнению с реостатным регулированием хорошее регулирование скорости при спуске различных грузов и малые скорости подхода к заданному месту остановки для механизмов передвижения и подъёма.  [c.844]

Узел трения находится в герметически закрываемой камере. Специальное уплотнительное устройство 5 герметизирует выход из камеры вращающегося вала 6, скорость вращения которого измеряется тахометром. Вал приводится во вращение через клиноременную передачу со сменными шкивами от гидромотора, который питается маслом из гидронасоса. Регулирование скорости подачи масла позволяет нужным образом изменять скорость вращения вала машины трения. Гидронасос работает от асинхронного электродвигателя 7 мощностью 1,7 кет. Вместо гидропривода с успехом может быть использован электропривод.  [c.158]


Вопросы пуска и регулирования скорости асинхронных электродвигателей рассмотрены в главе XIV.  [c.396]

Основные недостатки асинхронных двигателей — потребление реактивной энергии из сети и ограниченные возможности регулирования скорости по сравнению с двигателями постоянного тока.  [c.482]

Для асинхронных электродвигателей с короткозамкнутым ротором должен осуществляться прямой пуск при полном напряжении сети. Электродвигатели с фазовым ротором, не имеющие технологического регулирования скорости вращения, рекомендуется переделать на короткозамкнутые, т. е. на прямой пуск от полного напряжения. Электродвигатели с легкими условиями пуска (насосы, вентиляторы и др.), имеющие небольшие  [c.20]

Однако регулирование гидромуфтой при третьем виде нагрузки не уступает по экономичности регулированию скорости асинхронного электродвигателя реостатом в роторе, а ио сравнению с электродвигателем постоянного тока, работающим по схеме генератор — двигатель, регулирование гидромуфтой по третьему виду более экономично при значениях i > 0,55—0,6 и менее экономично при значениях i <0,55, т. е. в пределах t = 0,0 - 0,55.  [c.178]

В горной промышленности широкое применение нашли турбомуфты регулируемого и особенно предохранительного типов. Регулируемые турбомуфты применяются на шахтных подъемных машинах и лебедках, где они предназначены для бесступенчатого регулирования скорости подъема в условиях, опасных из-за газа или пыли. В таких условиях создание взрывобезопасного электромеханического привода представляет большие трудности. Поэтому применение для этих целей простых и надежных регулируемых турбомуфт в сочетании с асинхронными короткозамкнутыми электродвигателями постоянной скорости во взрывобезопасном исполнении упрощает решение этой задачи. Кроме того, предполагалось, что применение турбомуфт снизит динамические усилия в канатах, коренном валу, редукторе и тем самым повысит их срок службы.  [c.257]

Асинхронные двигатели с фазным ротором (кривая 2 на рис. 109,6) имеют несколько большую массу, габариты и стоимость, зато потери энергии в обмотках при переходных процессах меньше, чем у двигателей с короткозамкнутым ротором. Поэтому их рационально применять при более напряженном режиме работы. Для этих двигателей применяют регулирование скорости путем изменения сопротивления (резисторов) включаемого в цепь ротора. В зависимости от значения сопротивления разгон двигателя осуществляется по одной из искусственных характеристик, представленных на рис. 110, поясняющем процесс разгона механизма. В начальный момент сила тока ограничена максимальным сопротивлением. Характеристика 1 двигателя наиболее крутая. Разгон двигателя происходит по линии а. . .б, где частота вращения его возрастает от нуля до щ. После это-, го сопротивление уменьшают и двигатель переходит на другую характеристику 2, по которой его разгоняют до частоты вращения П2- Затем снова сопротивление уменьшают, сила тока  [c.286]

В станкостроении в качестве регулируемых главных приводов широкое применение получили приводы постоянного тока по системе генератор—двигатель с электромашинным усилением (ЭМУ), обеспечившим, плавное регулирование угловой скорости в требуемом диапазоне. В приводах подач, как и в главных приводах, используют механическое и электромеханическое ступенчатое регулирование. В небольших и средних станках подача режущего инструмента осуществляется от главного привода через самостоятельную коробку подач, где имеется требуемое количество ступеней переключения. Но во многих станках для упрощения кинематической цепи и повышения точности обработки деталей предусматриваются самостоятельные приводы для главного движения и подачи. Как правило, мощность приводов подач значительно меньше мощности главного привода. Применяют различные способы регулирования скорости приводов подач, которые зависят от мощности привода, режима его работы, диапазона, плавности и точности регулирования. Наиболее громоздко устройство коробки подач при механическом регулировании подачи. Значительно проще коробка подач при ступенчатом электромеханическом регулировании, осуществляемом с помощью двух- или многоскоростных короткозамкнутых асинхронных двигателей.  [c.207]

Асинхронно-синхронные муфты находят применение в приводах, где не требуется регулирования скорости. Основной режим работы такой муфты — синхронный (частоты вращения ведущего и ведомого валов равны). Эта муфты используются в качестве предохранительных, так как при синхронной частота вращения вращающий момент максимальный.  [c.204]

Муфты серии ИМС рассчитаны для работы с асинхронными двигателями, имеющими синхронные скорости 750, 1000 или 1500 об/мин, причем диапазоны регулирования скорости при постоянном моменте нагрузки составляют соответственно 710—100, 950—140 и 1450—200 об/мин. Эти муфты применяются в основном в механизмах с вентиляторным моментом нагрузки.  [c.208]

Электрическое торможение асинхронного электродвигателя различными способами. Регулирование скорости асинхронного электродвигателя. Однофазный и двухфазный асинхронные электродвигатели.  [c.326]

Наибольшее распространение в электроприводе крановых механизмов получили асинхронные двигатели, масса, стоимость и эксплуатационное обслуживание которых ниже, чем у двигателей постоянного тока. Двигатели постоянного тока используются для привода механизмов, требующих большого диапазона регулирования скорости, ее плавного изменения, большого числа включений в час. Характеристики видов и управляющих устройств крановых электроприводов приведены в табл. II. 1.1.  [c.223]


Магнитные контроллеры (МК) (см. п. II.5) Переменный (см. табл. П.1.25) Асинхронные электродвигатели с фазным ротором с резисторами в цепи ротора, используемые на механизмах передвижения и подъема На механизмах передвижения применяется электропривод с регулированием скорости включением в цепь ротора встречного напряжения и изменением сопротивлений резисторов в этой цепи и импульсно-ключевой способ регулирования. На механизмах подъема устанавливается электропривод с динамическим торможением-с самовозбуждением, имеющий жесткие характеристики в режиме спуска Ступенчатое Мостовые, козловые, портальные, башенные, контейнерные краны краны  [c.225]

Регулируемые гидромуфты. Иногда в процессе работы машины требуется изменять скорости рабочего органа в более широких пределах, чем это возможно осуществить двигателем. Часто необходимость регулирования скорости возникает в приводах, двигатели которых не допускают регулирования оборотов (например, в приводах с асинхронными короткозамкнутыми электродвигателями),.  [c.203]

Со ступсн4латым регулированием скорости не свыше 6 1 и не слишком частыми пуск ами Асинхронные электродвигатели с к. 3. ротором и переключением числа полюсов Металлорежущие станки малой мощности лифты со скоростью дви жения до 1 м/с  [c.125]

Среди разнообразных способов регулирования скорости вращения двигателей переменного тока для установок больших мощностей особо выделяется применение асинхронных вентильных каскадов. Первая промышленная установка с вентильным каскадом была осуществлена в 1948 г. ВЭИ для привода прокатного стана на заводе Красный Октябрь в Волгограде. Позднее вентильные каскады были установлены на Челябинском металлургическом комбинате, на Закавказском металлургическом заводе (1961 г.) и др. В 1965 г. асинхронный вентильный каскад с улучшенными свойствами регулирования был установлен на шахте № 42 Капитальная треста Копейскуголь для подъемной машины.  [c.123]

Ивахненко А. Г. Автоматическое регулирование скорости асинхронных двигателей небольшой мощности. Киев, Изд-во АН УССР, 1953.  [c.285]

Сравнение видов электрического торможения. Рекуперативное торможение можно применять в шунтовых двигателях постоянного тока с регулированием скорости током возбуждения и в короткозамкнутых асинхронных Двигателях с переключением полюсов. Выбор между противовключеняем и динамическим торможением зависит от требуемой быстроты торможения и точности остановки при одинаковых исходных токах в якоре торможение противовключением более эффективно, так как тормозной момент при противо-включении меняется мало, а при динамическом торможении спадает до нуля. Динамическое торможение практически считается наиболее точным. Для реверсивных приводов чаще применяют противовключение, для нереверсивных— динамическое, так как схема последнего проще.  [c.8]

Выбор рода тока для электроприводов. На районных электрических станциях энергия генерируется в форме переменного тока и на промышленные предприятия подаётся трёхфазный ток. Поэтому во всех случаях, где применение двигателей постоянного тока не вызывается производственной необходимостью, следует устанавливать электродвигатели трёхфазного тока. Потребность в двигателях постоянного тока может возникать I) при широком и плавном регулировании скорости, 2) при большом числе пусков в час и вообще при напряжённом повторно-кратковременном режиме 3) при работе электроприводов по специальному графику скорости, пути 4) при необходимости в особой плавности пуска и торможении, перехода от одного рабочего процесса к другому 5) при необходимости кроме основных, рабочих, получить и заправочные скорости механизмов. Краткое сопоставление различных электрических типов электродвигателей в отношении регулирования скорости дано в табл. 4, из которой видно, что во всех тех случаях, где требуется плавное регулирование скорости в пределах 1 3 и выше, наиболее целесообразно применять двигатели постоянного тока или систему Леонарда, а в малых мощностях электронноионный привод. Последний в эксплоатационном отношении достаточно не изучен. При ступенчатом регулировании до 1 4 преимущественно при малых мощностях (особенно в металлорежущих станках) могут быть использованы короткозамкнутые асинхронные двигатели с переключением полюсов. Коллекторные двигатели переменного тока в указанных пределах экономичны в основном лишь при установке  [c.20]

Индивидуальный привод. В качестве индивидуального привода роликов рольгангов (фиг. 106) обычно употребляются асинхронные двигатели трёхфазного тока с короткозамкнутым якорем. Изменение скорости на этих рольгангах производится регулировкой частоты в пределах от 5 до 60 гц. У рольгангов, где требуется регулирование скорости, также применяют шунтовые двигатели с групповым пуском по системе Леонарда.  [c.1022]

Привод диска салазковой пилы осуществляется асинхронным двигателем (40— 250 л. с.), работающим с маховиком. Для привода подачи применяют шунтовой двигатель с регулированием скорости изменением его тока возбуждения или управляемый по Леонарду.  [c.1060]

Асинхронные электродвигатели с контактными кольцами (с реостатным регулированием скорости и с использованием протнвовключе-ния)  [c.842]

Регулирование скорости асинхронных электродвигателей. Для двигателей с фазовым ротором применяется регулирование скорости реостатом в цепи ротора. Схема регулирования не отличается от пусковой схемы, но реостат должен быть рассчитан на длительный режим. Этот способ дает возможность получить разные скорости (ниже синхронной) при наличии более или менее значительного момента статического сопротивления на валу двигателя. Механические характеристики приведены на фиг. 13, на которой пока.чано, что при Af = Afj можно получить скорости Пх, /12, щ а rig.  [c.419]

Основным методом расчета двигателя по нагреву является метод эквивалентного тока. Если при всех условиях работы данного графика мощность или момент пропорциональны току, могут быть использованы также методы эквивалентной мощности или момента. Метод эквивалентного момента не пригоден для асинхронных электродвигателей с короткоза.мкнутым ротором при частых пусках, для двигателей постоянно1 о тока параллельного возбуждения с регулированием скорости путем ослабления магнитного потока, а также для двигателей постоянного тока последовательного возбуждения.  [c.428]

Кроме фирмы Нейрпик, гидромуфты типа ER2 изготовляет фирма Феродо. Эти гидромуфты также английского типа со скользящей черпательной трубкой. Они устанавливаются для разгона и регулирования скорости в приводах различных машин. В частности, гидромуфты Феродо применяются в изолировочных машинах на обмотке кабеля. Такие установки, поставленные фирмой Феродо, работают и в СССР. Привод вала изолировочной машины осуществляется через гидромуфты с двумя асинхронными электродвигателями с каждого конца вала. Гидромуфты производят разгон, останов приводимой машины и синхронизацию приводных валов, расположенных по обоим концам главного приводимого вала. Каждая гидромуфта передает мощность 50 л, с. при п, = 1450 o6fMUH ведущего вала, их активный диаметр D = 400 мм.  [c.199]


Совершенно иной принцип действия асинхронных муфт (рис. 228). На валу 10 жестко закреплена ведущая часть 7 муфты. Она входит в выточку ведомой части 6 муфты и имеет на своей периферии катушку 2. При пропускании тока через катушку 2 вокруг нее создается магнитное поле. Так как вал 10 вращается, то с ним в )ащается и магнитное поле катушки. Оно увлекает за собой во вращение ведомую часть совершенно также, как вращающееся поле асинхронного двигателя увлекает за собой его ротор. Вращение ведомой части происходит с некоторым скольжением, т. е. скорость вращения ведомой части несколько меньше скорости ведущей. Величину этого расхождения можно менять в довольно значительных пределах, создавая тем самым регулирование скорости вращения ведомого вала при одной и той же скорости ведущего вала 10. Это достигается изменением силы тока, питающего катушку, с помощью реостата И и колец 8 п 9. Надо только иметь в виду, что при большом коэффициенте трансформации скорости вращения к. п. д. муфты будет низок. Так как катушка муфты имеет большое число витков, то для работы муфты достаточны небольшие токи, обеспечиваемые электронным устройством 1.  [c.439]


Смотреть страницы где упоминается термин Асинхронные Регулирование скорости : [c.24]    [c.355]    [c.1057]    [c.394]    [c.444]    [c.231]   
Справочник машиностроителя Том 2 (1955) -- [ c.419 ]

Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.539 ]



ПОИСК



Асинхронные дит гнели закрытые с контактными кольцами — Технические статора — Регулирование скорости Схема

Регулирование скорости

Регулирование скорости переключением . числа полюсов асинхронных короткозамкнутых двигателей

Скорость 1 —370, 373, 376, 377 — Распределение 1 —378, 380 — Сложени асинхронных двигателей — Регулирование

Скорость асинхронных двигателей Регулирование

Скорость асинхронных двигателей Регулирование двигателей трехфазных

Тиристорный преобразователь для глубокого регулирования скорости вращения асинхронных электродвигателей

Характеристики и регулирование скорости электроподвижного состава с асинхронными двигателями

Электрическое с асинхронными двигателями - Скорость - Регулирование



© 2025 Mash-xxl.info Реклама на сайте