Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОСНОВЫ ДИНАМИКИ МЕХАНИЧЕСКОЙ СИСТЕМЫ

ГЛАВА 6. ОСНОВЫ ДИНАМИКИ МЕХАНИЧЕСКОЙ СИСТЕМЫ  [c.132]

Учебник написан в соответствии с 85-часовой программой курса теоретической механики для студентов немашиностроительных специальностей втузов. В нем излагаются основы кинематики, динамики материальной точки п механической системы, а также статики твердого тела даются методические указания к решению задач, примеры этих решений, элементы самоконтроля и задачи для самостоятельной работы студентов. Приложение, содержит элементы векторного исчисления.  [c.2]


В 1947 г. авторы работ [27, 115], изучая влияние различных нелинейностей на динамику механических цепей систем управления, одновременно и независимо друг от друга пришли к рассмотрению динамической модели, представленной на рис. 7.15, б и имитирующей зазор в какой-либо из кинематических пар, например в зубчатой передаче (нелинейный элемент типа зазор ). В [27], кроме того, исследован случай, когда наряду с зазором учитывается упругость ведомой системы, как показано на рис. 7.15, б (нелинейный элемент типа вилка ). В этих работах была дана приближенная оценка динамических свойств нелинейных элементов подобного типа. В основу выполненного там анализа положен ряд упрощающих предположений  [c.236]

В монографии с единых методических позиций теории волновых процессов излагаются физико-математические основы динамики упругих систем с движущимися границами и нагрузками. Рассматриваются качественно различные случаи проявления эффекта Доплера и излучение волн в упругих направляющих равномерно движущимися нагрузками. Подробно анализируются динамические собственные колебания систем с движущимися границами, в которых нельзя отдельно выделить пространственную и временную составляющие. Их особая роль связана с тем, что только они могут существовать в исследуемых системах в качестве свободных колебаний. Развита качественная теория параметрической неустойчивости второго рода, в основе которой лежит нормальный эффект Доплера. Рассмотрено переходное излучение упругих волн, возникающее при равномерном и прямолинейном движении механического объекта вдоль неоднородной упругой системы (струны, балки, мембраны, пластины).  [c.2]

В Государственном научно-исследовательском институте машиноведения разработан электродинамический вибратор для одновременного возбуждения продольных и крутильных колебаний (рис. 30). Система возбуждения как продольных, так и крутильных колебаний содержит магнитопровод и неподвижные рабочие катушки, подвижная система вибратора является общей для обеих систем Ч Даны теоретические обоснования разработки, в основу методики расчета положено совместное решение уравнения динамики для механической системы с уравнениями электротехники для э. д. с. в обмотках трансформаторов. Методика может быть целиком использована и для расчетов конструкций с одинарным использованием этих видов движения.  [c.67]


Выбор инерционных и упругих параметров механической системы, при исключении влияния зазоров и других нелинейностей на ее динамику, можно осуществить на основе разработанного  [c.353]

Вторая часть трактата излагает аналитическую динамику таких же механических систем, причем в основу вывода системы  [c.2]

Отметим здесь, как это уже было сделано в п. 28 гл. V, что условие а) будет всегда удовлетворено на основе прямых данных механической задачи, а условие б) включает в себя большей частью предварительное интегрирование системы дифференциальных уравнений, которое само по себе составляет более важную и, вообще говоря, более трудную задачу динамики. Однако достаточно представить себе технически наиболее простые случаи (маховики, балансиры, шатуны и т. п.), чтобы понять, как часто рассматриваемое нами движение твердого тела можно прямо считать известным.  [c.10]

Вопрос об определении места вариационных принципов механики в системе физических знаний заключается, конечно, в первую очередь в форме выражения этого принципа. Однако указанный вопрос не исчерпывается этой формой. Обычное толкование принципа наименьшего действия состоит в том, что его широкое применение в физике основано на удобной форме. Ряд авторов стоит на той точке зрения, что содержание принципа Гамильтона тождественно с содержанием основных уравнений динамики. Так, например, Кирхгоф говорит Принцип Гамильтона, д алам-беровы и лагранжевы дифференциальные уравнения поэтому совершенно равнозначны ). Такая точка зрения господствует в научной литературе XIX в. Тем не менее, отождествление содержания принципа Гамильтона и уравнений динамики представляет собой положение недостаточно обоснованное., Методологической основой этой концепции является непонимание соотношения между формой и содержанием вообще. Тот факт, что как в механике, так и вне ее принцип Гамильтона применяется в одной и той же форме, еще недостаточен для того, чтобы сделать вывод о том, что содержание этого принципа в том и другом случае одно и то же. Принцип Гамильтона выражает некоторое свойство неорганической природы, общее ряду форм движения, и постольку он применим к механическому движению как частному случаю.  [c.864]

Такая достоверность научных представлений в рамках механической картины мира тесно связана с новым стилем научного исследования. Статика не могла слиться с экспериментальным исследованием. Динамика могла это сделать. Эксперимент исходит из начального состояния системы, подтверждает логический или математический вывод, сделанный на основе представления о механизме изменения, механизме перехода от начального состояния к последующему. Динамика говорит о том, что будет с телом при определенных начальных условиях и при определенных воздействиях. Именно в этом состоит схема эксперимента. Поэтому развитие динамики было условием развития экспериментального исследования. Последнее и придало механическому естествознанию ту  [c.113]

С точки зрения динамики любой МВК без учета упругости звеньев и трения в кинематических парах можно рассматривать как голономную механическую систему с идеальными связями. Уравнения связей механизма могут быть получены как уравнения кинематики на основе метода замкнутых векторных контуров [12]. В уравнениях кинематики МВК вида (4.2.4) зависимые координаты не могут быть выражены в явном аналитическом виде через обобщенные координаты, поэтому уравнения движения МВК должны быть рассмотрены совместно с системой тригонометрических уравнений связей.  [c.458]

Одними из перспективных методов интенсификации производства в нефтегазодобывающей промышленности являются методы, основанные на волновой технологии [1-3]. В ее основе лежит идея о преобразовании колебаний и волн в другие формы механического движения. Нелинейная волновая механика многофазных систем позволила открыть ряд эффектов, происходящих в многофазных системах, в частности односторонне направленное перемещение твердых частиц и капель и ускорение течений жидкости в капиллярах и пористых средах, увеличение амплитуды волны по мере удаления от источника из-за нелинейного взаимодействия волн и пр. Для реализации этих эффектов в промышленности необходимы генераторы, создающие требуемые типы волн — гармонические, периодические импульсы, ударные и т. д. В зависимости от конструктивного исполнения устройств, предназначенных для создания периодических импульсов, можно обеспечить как ударное, репрессивное, так и депрессивное воздействие на пласт с целью повышения производительности добывающих или приемистости нагнетательных скважин. Принцип действия некоторых конструкций, предназначенных для ударного воздействия на пласт, можно охарактеризовать как мгновенную остановку падающего столба жидкости. Для определения амплитуды ударного воздействия и формы импульса необходимо знать волновую картину (динамику распространения прямых и отраженных волн сжатия и разряжения), возникающую в жидкости.  [c.208]


Для описания движения механических систем используют разные математические модели, в основе которых лежат различные принципы — законы движения. В этой главе перечислены осно ные объекты и принципы классической динамики. Наиболее простой и важной моделью движения реальных тел является ньютонова механика, которая описывает движение свободной системы взаимодействующих точек в трехмерном евклидовом пространстве. В 6 обсуждается целесообразность рассмотрения с точки зрения ньютоновой механики усложненных моделей движения.  [c.11]

Поскольку движение по своей природе — явление на правленнов, кажется удивительным, что для определени движения достаточно двух скалярных величин. Теоремг о сохранении энергии, устанавливающая, что сумма кинетической и потенциальной энергий остается неизменной в процессе движения, дает лишь одно уравнение, в то время как для определения движения одной частицы требуется три уравнения в случае механической системы, состоящей из двух или более частиц, эта разница становится еще боль шей. И тем не менее эти два фундаментальных скаляра дей ствительно содержат в себе полную динамику наиболее сложных материальных систем, при том, однако, условии что эти скаляры кладутся в основу некоторого принципа а не просто уравнения.  [c.16]

При измерении в ССО применяют как дорезонансный, так и зарезонансный режимы работы системы, а силы инерцин используются непосредственно для из e рения параметров вибрации. С их помощью измерение абсолютной вибрации исследуемого объекта сводится к измерению вынун<денной относительной вибрации объ екта и упруго связанного с ним инерционного элемента (рис. 9). Эти устройства имеют динами ский принцип действия, поскольку в основе измерений лежит решение уравнений динамики измерительной механической системы [30]. В измерите.1Ь-ных устройс1вах обоих видов силы инерции F создаются с помощью инерционного элемента массы т  [c.122]

Первым фундаментальным законом, на котором строится динамика точки переменной массы, является закон неуничтожи-мости (сохранения) механического движения. Мерой механического движения, когда оно сохраняется как механическое движение, является вектор количества движения. Закон сохранения количества движения в элементарной (скалярной) форме был открыт еще Декартом (1596—1650), который впервые указал на весьма большое значение этого закона для изучения механических движений. При доказательстве закона сохранения количества движения Декарт исходил из простейших явлений абсолютно упругого удара и закона инерции в последующем развитии теоретической механики этот закон часто рассматривался как аксиома и был основой для кинетического построения механики в отличие от динамической (ньютонианской) концепции. Мы формулируем закон сохранения количества движения в следующем виде при любых механических процессах, протекающих в замкнутой механической системе точек (без действия внешних сил), суммарное количество движения остается постоянным.  [c.14]

При каждом фиксированном значении параметра ц уравнения (50) можно рассматривать как уравнения движения механической системы с функцией Лагранжа о и оо связью а 9 = = 0. Таким образом, мы имеем целое семейство внутренне непротиворечивых математических моделей движения. Каждая из них является сиитезом традиционной неголономной механики, основанной на принципе Даламбера—Лагранжа, и вакономной динамики, в основу которой положен вариационный принцип  [c.59]

После Ныотона было найдено много других способов построения динамики как науки. В основе одного из них лежит вариационный принцип Гамильтона — Остроградского. Рассмотрим этот принцип для случая голономной механической системы с идеальными удерживающими связями, когда активные силы потенциальные стационарные.  [c.260]

Продолжая классическую традицию английской физики У. Томсона, Фарадея Мак-Куллоха, Максвелла, которые шли по пути построения физических (механических) моделей на основе аналогии, Лармор ) в конце XIX в. также ставит перед собой задачу сведения всего многообразия явлений к динамическим принципам. Он считает центральной задачей разработку идеи о каком-либо определенном характере связи между эфиром и веществом. Для этой цели он воспользовался принципом наименьшего действия, который, по его мнению, позволяет свести к динамике такие физические теории, внутренний динамический механизм которых скрыт от непосредственного наблюдения. Аналогичную точку зрения на проблемы электродинамики развивал ранее Гельмгольц. Лармор находит классический вид лагранжиана и, воспользовавшись определением величин Е и Н и тем, что полная энергия системы связана с L, выводит уравнения Максвелла. Легко доказать, идя несколько иным путем, что уравнения  [c.856]

Изданием в 1736 г. Механики Лагранж заложил основы аналитической механики, которой затем много занимались он сам, Клеро, Даламбер, Д. Бернулли и другие ученые XVIII в. Но у Эйлера задачи механики, хотя и решаются средствами анализа бесконечно малых, однако каждая сводится к решению уравнений по-своему. Кроме того, сочинение Эйлера 1736 г.— это механика материальной точки. В своих дальнейших трудах, как мы уже знаем, Эйлер и другие ученые развили динамику твердого тела. Лагранж охватил лмехаиику системы материальных точек и тел и создал единообразный и общий метод сведения механических задач к решению соответствуюш их математических задач. Но ясно, что при этом ему приходилось исходить из каких-то физических, эксиериментальных положений. Каковы эти положения И насколько общими являются методы Лагранжа, действительно ли они охватывают все задачи механики  [c.202]


Для исследования оптимальных движений механических систем со свободными (или управляющими, регулируемыми) функциями имеются мощные математические методы, составляющие в наши дни основу вариационного исчисления или, более широко, функционального анализа. Создание реальной конструкции (ракеты, самолета, автопилота) тесно связано с изучением экстремальных свойств функций многих переменных и функционалов. Мудрый Леонард Эйлер писал в одной из своих работ ...так как все явления природы следуют какому-нибудь закону максимума или минимума, то нет никакого сомнения, что и для кривых линий, которые описывают брошенные тела, если на них действуют какие-нибудь силы, имеет место какое-то свойство максимума или минимума . Анализ содержания научных статей по динамике полета, опубликованных за последние 20—25 лет, убеждает нас в том, что методы вариационного исчисления не только позволяют выделять из бесконечного разнообразия возможных движений, определяемых дифференциальными уравнениями механики, более узкие классы движений, для которых некоторые (обычно интегральные) характеристики будут оптимальными в ряде случаев они дают возможность детального аналитического исследования, так как для некоторых экстремальных режимов уравнения движения интегрируются в конечном виде. Опорные аналитические решения для оптимальных движений можно находить во многих трудных задачах, когда системы исходных уравнений являются нелинейными. Как эмпирический факт можно отметить, что для классов оптимальных движений нелинейные дифференциальные уравнения становятся более податливыми и в большом числе задач Зо-пускают интеграцию в квадратурах. Мы уверены в том, что семейства аналитических решений нелинейных уравнений механики в конечном виде внутренне тесно связаны с условиями оптимальности и в задачах динамики ракет и самолетов играют роль невозмущенных движений, аналогичных кеплеровым движениям в задачах небесной механики .  [c.35]

Как видно, современная техника все чаще ставит перед проектными организациями и конструкторскими бюро вопросы, решение которых относится к компетенции теории колебаний механических систем. Разумеется, втуз не может обеспечить подготовки, достаточной для решения динамических задач, встречающихся в практике ироектирования, однако он обязан научить правильному пониманию положений динамики и в частности теории, колебаний. Вследствие ограниченности объема часов, запланированных на динамику, студентам излагаются обычно только основные понятия элементарной теории колебаний системы с одной сте-пенью свободы. Современная же техника требует, чтобы студентов знакомили с более широким кругом вопросов теории колебаний. Целесообразно излагать действие произвольной периодической силы и импульсивных нагрузок, колебания систем с несколькими степенями свободы, основы теории виброизоляции, теории случайных колебаний и друг,ие вопросы.  [c.35]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]


Смотреть страницы где упоминается термин ОСНОВЫ ДИНАМИКИ МЕХАНИЧЕСКОЙ СИСТЕМЫ : [c.352]    [c.551]    [c.446]    [c.71]    [c.142]   
Смотреть главы в:

Основы классической механики  -> ОСНОВЫ ДИНАМИКИ МЕХАНИЧЕСКОЙ СИСТЕМЫ



ПОИСК



Динамика механической системы

Механические основы

Механические системы механических систем

Система механическая

Системы Динамика



© 2025 Mash-xxl.info Реклама на сайте