Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проектирование геометрическое

Задачи геометрического проектирования. Геометрическое проектирование включает в себя задачи геометрического моделирования, геометрического синтеза и оформления конструкторской и технологической документации.  [c.7]

При геометрическом проектировании геометрические модели применяются для описания геометрических свойств объекта конструирования (формы, расположения в пространстве) решения геометрических задач (позиционных и метрических) преобразования формы и положения геометрических объектов ввода графической информации оформления конструкторской документации.  [c.37]


Решение задач, таким образом, сводится к построению треугольника или параллелограмма скоростей и определению элементов, сторон и углов этих геометрических фигур. Это определение может быть сделано или тригонометрическим путем, или проектированием геометрического равенства (1 ) на декартовы оси координат.  [c.312]

МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МАШИННОЙ ГРАФИКИ В СИСТЕМАХ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ГЕОМЕТРИЧЕСКИХ ОБЪЕКТОВ  [c.206]

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ. ГЕОМЕТРИЧЕСКИЕ И ГРАФИЧЕСКИЕ ЗАДАЧИ  [c.279]

Макетный метод проектирования Геометрическая форма, размеры моделей Горная фафическая документация Виды и комплектность  [c.282]

Прикладные программы предназначены для получения проектных решений в конкретной проблемной области. Ядро комплекса прикладных программ (базовые проблемно-ориентированные программы) образуют те из них, которые обеспечивают решение типовых задач, неоднократно встречающихся при проектировании (геометрические задачи, задачи поиска данных в таблицах, печати текстовых документов, формирования программ управления чертежными устройствами, станками с ЧПУ).  [c.392]

Обычно расчеты по проектированию геометрически подобных муфт начинают с определения величины активного диаметра. Все остальные размеры гидромуфты легко могут быть найдены, есл  [c.200]

Обычно расчеты по проектированию геометрически подобных гидромуфт начинают с определения активного диаметра. Все остальные размеры гидромуфты легко могут быть найдены, если известен масштаб геометрического подобия к = ОрЮ , где — активный диаметр натурального образца, Ор — активный диаметр рассчитываемой гидромуфты. Расчет ведут для выбранного значения КПД. Обычно за расчетное значение КПД принимают его значения в пределах 93—97%, чтобы гидромуфта была и экономичной, и приемлемой по размерам.. Активный диаметр рассчитываемой гидромуфты определяют по формуле  [c.169]

С помощью проектора = 6 — т тр = 6 — осуществляется проектирование геометрических объектов в касательное пространство к Et Х = А На Ei естественным образом вводится  [c.138]

Необходимые при проектировании геометрические параметры для автомобиля могут быть выявлены также упрощенным графическим путем.  [c.147]

Другой особенностью процесса проектирования является ярко выраженное преобладание при проектировании геометрических задач. Как правило, для разработки инструмента не требуется сложных прочностных и динамических расчетов, зато объем геометрических задач резко возрастает. В большинстве случаев профилирование инструмента связано с решением задачи поиска огибающей, вопросами поиска точек и линий касания. Сглаживания ломаных линий, замены сложных кривых простыми, решением трансцендентных уравнений. В связи с этим для профилирования инструмента требуется специфический математический аппарат, в частности, начертательная, аналитическая и дифференциальная геометрии, численные методы. Учитывая сложный характер взаимодействия детали и инструмента, проектирования с использованием только аналитических методов профилирования режущих кромок зачастую недостаточно — требуется отображение процесса проектирования на дисплее. В связи о этим в САПР-И широко применяется компьютерная графика. Целесообразность использования графики обоснована еще и тем, что во многих случаях с точки зрения алгоритма проектирования можно завершить работу программы не промежуточным расчетом, а законченным рабочим чертежом.  [c.557]


Аналитические модели широко применяются при подготовке управляющих программ для станков с ЧПУ, при проектировании геометрических объектов сложной формы (корпусов судов, самолетов, автомобилей и т. п.), при раскрое материалов и др. Примером могут служить геометрические модели контуров операционных эскизов при проектировании технологических процессов для механической обработки деталей на токарных станках с ЧПУ.  [c.245]

При проектировании геометрических объектов, имеющих продольную ось симметрии (обычно ось Z), дискретная каркасная модель получается путем проведения поперечных сечений, перпендикулярных оси симметрии. Отдельные поперечные сечения задаются параметрическими уравнениями х=х и, Vq), у=у(и, Vq), z=z(vo), где Vo — имеет постоянное значение для данного сечения. Если поперечное сечение имеет постоянную форму, но различные размеры, уравнения упрощаются x=a(v)x(u, 0), y=a(v)y u, 0), где сече-  [c.246]

МАКЕТНЫЙ метод ПРОЕКТИРОВАНИЯ. ГЕОМЕТРИЧЕСКАЯ ФОРМА, РАЗМЕРЫ МОДЕЛЕЙ  [c.1704]

При проектировании геометрически подобных образцов с концентраторами различных типов и формы обычно соблюдают следующ,ие условия  [c.110]

Плоскости можно применять при проектировании геометрической формы резцов, зуборезных гребенок, зуборезных резцов, д.ая изготовления прямозубых колес, торцовых поверхностей дисковых инструментов (дисковых фрез, круговых фасонных резцов и др.).  [c.106]

Поверхности вращения можно применять при проектировании геометрической формы дисковых н цилиндрических насадных инструментов, круглых фасонных резцов, элементов базирования и крепления концевых н хвостовых инструментов, осевого инструмента (сверла, зенкеры, развертки, протяжки, прошивки).  [c.106]

Отметим, что, применяя в качестве образующей закономерно деформирующийся круг, можно просто решать многие вопросы проектирования задания или замены (аппроксимации) некоторых сложных поверхностей. При этом значительно упрощаются геометрические построения, конструктивные формы и технологический процесс изготовления изделий с криволинейными поверхностями. Можно спроектировать и построить самые разнообразные поверхности, изменяя закон движения и деформации образующего круга и принимая в качестве направляющих осей прямые линии или плоские и пространственные кривые. Полученные таким образом поверхности могут заменять целый ряд сложных технических поверхностей, в которых конструктор не установил, не учел или не обнаружил возможностей циклических поверхностей. Отметим, что циклические поверхности дают возможность применить способ получения сложных форм с заранее заданными свойствами, например получить каналовую или трубчатую поверхность с заданной последовательностью (закономерностью) изменения площади сечения канала и с заданной формой входного и выходного отверстий.  [c.206]

При соблюдении геометрических, динамических и тепловых условий подобия можно получить данные на стадии проектирования по гидродинамическому сопротивлению, температурным полям твэлов, провести оптимизацию их геометрических размеров, определить режимы течения. Условием подобия для сия трения и сил инерции газового теплоносителя является равенство чисел Re для модели и натуры  [c.47]

В задачу проектирования входит расчет геометрических размеров зубчатой передачи (табл. 2.1) расчет контрольных размеров (табл. 2.2) расчет коэффициента перекрытия и удельных скольжений и оценка проектируемой передачи по геометрическим показателям.  [c.30]

Чертеж общего вида (код ВО)—документ, определяющий конструкцию изделия, взаимодействие его составных частей и поясняющий принцип работы изделия. В учебном проектировании чертеж общего вида включает элементы Теоретического чертежа , определяющего геометрическую форму изделия и координаты расположения составных частей, Габаритного чертежа , содержащего упрощенное изображение изделия с габаритными, установочными и присоединительными размерами, и Монтажного чертежа , содержащего данные для установки изделия на месте применения.  [c.388]


Буксование наступает при перегрузках, когда не соблюдается условие (11.1) Ffгеометрической формы и качества поверхности катков выводит передачу из строя. Поэтому при проектировании следует принимать достаточный запас сцепления и не допускать использования фрикционной передачи в качестве предохранительного устройства от перегрузки. Применение самозатягивающихся нажимных устройств, как правило, устраняет буксование.  [c.216]

Основная задача конструкторского проектирования — реализация принципиальных схем, полученных на этапе функционального проектирования. При этом производятся конструирование отдельных деталей, компоновка узлов из деталей и конструктивных элементов, агрегатов из узлов, после чего оформляется техническая документация на объект проектирования. Одна группа задач конструкторского проектирования определяет чисто геометрические параметры конструкции (например, параметры формы) — задачи геометрического проектирования, а другая группа задач предназначена для синтезирования структуры (топологии) конструкции с учетом ее функциональных характеристик — задачи топологического проектирования. Кроме того, к задачам конструкторского проектирования необходимо отнести проверку (анализ) качества полученных конструкторских решений. Классификация задач конструкторского проектирования показана на рис. 1.1.  [c.7]

Основу геометрического проектирования составляют геометрическое моделирование и синтез. Геометрическое моделирование вклю-  [c.67]

Система автоматизированного конструирования позволяет описать геометрический образ детали. Эти данные передают в систему проектирования технологических процессов и подготовки УП для токарных станков с ЧПУ. Если технолог-программист уверен, что система автоматизированной подготовки (САП) УП достаточно обучена для разработки программ изготовления подобных деталей, то он задает автоматический режим. В противном случае он использует режим диалога. После окончания работы САП УП разработанный технологический процесс выводят на печать, а УП записывают на магнитную ленту.  [c.150]

Каждый уровень языка необходимо рассматривать во взаимодействии с остальными уровнями. Технолог кодирует данные о детали на проблемно-ориентированном языке первого уровня, дальнейшие преобразования и построение информационных моделей детали на последующих уровнях проводятся подпрограммами специального программного обеспечения. Использование трехуровневого языка кодирования геометрической информации позволяет передать решение технологических вопросов расчета управляющих программ для станков с ЧПУ системе автоматизированного проектирования, реализованной на ЭВМ третьего пли четвертого поколения [31].  [c.173]

В работе [76] по формальным методам синтеза контактных схем А. Г. Лунц ввел операции над логическими функциями, в результате которых на основе матриц Л и В одинаковой размерности тХп можно получить новую матрицу С той же размерности. Элементы матрицы С получаются через элементы матриц А и В применением различных логических функций. Покажем, что геометрическая интерпретация операций над скелетными матрицами дает возможность эффективно решать некоторые наиболее употребительные прп автоматизированном проектировании геометрические задачи. Рассмотрим решение с помощью рецепторных матриц ряда задач, которые были решены выше аналитическими методами.  [c.251]

ЕСКД. Макетный метод проектирования. Геометрическая форма, размеры моделей.  [c.96]

Винтовые поверхности можно применять при проектировании геометрической формы винтовых канавок спиральных сверл, винтовых протяжек, рабочей части резьбообразующего инструмента, передней и задней к,1нерхностеи зуборезных червячных фрез и др.  [c.106]

Отметим, что, применяя в качестве образующей закономерно деформирующийся круг, можно просто решать многие вопросы проектирования задания или замены (аппроксимации) некоторых сложных поверхностей. При этом значительно упрощаются геометрические построения, конструктивные формы и технологический процесс изготовления изделий с криволинейными поверхностями. Можно спроектировать и построить самые разнообразные поверхности, изменяя закон движения и деформации образующего круга и принимая в качестве направляющих осей прямые линии или плоские и пространственные кривые. Полученные таким образом поверхности могут заменять целый ряд сложных технических поверхностей, в которых конструктор не установил, не учел или не обнаружил возможностей циклических поверхностей. Ошетим, что циклические поверхности-дают воз-  [c.227]

Широкое внедрение в производство и образование электронно-вычистительной техники требуют внесения корректив как в содержание общеинженерных дисциплин, так и в методику их преподавания. Начертательная геометрия как учебная дисциплина должна способствовать глубокому усвоению учащимися ее сущности как науки, изучающей методы геометрического моделирования пространств различного числа измерений и структур, так как построение геометрических или математических моделей является одним из важных этапов автоматизированного проектирования и расчета современной техники, оптимизации технологических процессов, организации и управления производством.  [c.6]


Как было (угмсчено в первой главе, в курсе начертательной геометрии рассматривается два типа отношений между геометрическими фигурами позиционные и метрические. Соответственно этому решаются два типа задач. Изучение теории и алгоритмов решения позиционных задач в трехмерном расширенном евклидовом пространстве направлено на развитие "пространственного мыпьтсния учащихся для дальнейшего чтения и составления чертежей трехмерных объектов как на бумаге, так и на экранах дисплеев. Некоторые из них (построение касательных плоскостей, соприкасающихся поверхностей) имеют непо-среаственпое значение и составляют основу при составлении математических моделей технических форм в процессе их автоматизированного проектирования и воспроизведения на оборудовании с числовым программным управлением.  [c.99]

Геометрические модели. В алгоритмах геометрического проектирования фигурируют геометрические объекты, являющиеся исходными данными, промежуточными и окончательными результатами конструирования. Детали и узлы конструкции имеют самые разнообразные геометрические характеристики. Например, поверхность детали характеризуется микрогеометрией (шерохова-тостькз поверхности, отклонением формы, размеров) и  [c.36]

Задачи автоматизации конструкторского проектирования делятся на задачи топологического и геометрического проектирования. Формализация задач топологического проектирования наиболее просто производится с помощью теории графов. Для автоматизации решения задач компоновки и размещения в основном используются комбинаторные алгоритмы и алгоритмы, основанные на методах математического программирования. В наибольшей степени структуре задач компоковки и размещения соответствуют комбинаторные алгоритмы (переборные, последовательные, итерационные, смешанные и эвристические). Для решения задач трассировки применяются распределительные и геометрические алгоритмы.  [c.67]

Лингвистическое обеспечение при автоматизации конструкторского проектирования. В процессе выполнения конструкторских работ с использованием вычислительной техники проектировщик, кроме традиционных средств ввода — вывода алфавитно-цифровой информации, использует аппаратные средства машинной графики. Операции над геометрическими объектами (ГО) задаются средствами графичешгих языков (ГРАФИК, ГЕОМАЛ, АППАРАТ, ПРИС и др.) и осуществляются с помощью пакетов графических программ (ГРАФОР, ФАП-КФ, ГРАФ АЛ и др. [5, 6, 10]). Совокупность графи-ческог(з языка и соответствующего пакета графических программ называют системой геометрического моделирования. Примером такой системы служат язык и пакет прикладных программ ОГРА [6].  [c.163]

Пакет программ ФАП-К.Ф также разработан на базе языка ФОРТРАН и относится к программным средствам геометрического моделирования. Он может быть использован в системах автоматизированного конструирования и технологического проектирования, при решении сложных геометрических задач, составлении управляющих программ для станков с ЧПУ, для моделирования движения деталей узлов и механизмов, в задачах раскроя материала и т. д. [5]. В программах пакета используются геометрические переменные и операторы. Так,, все плоские ГО делятся па элементарные ГО (ЭГО), ломаные, лекальные кривые, составные ГО (СГО) и конструктивные ГО (КГО). ЭГО включают точку, прямую, окружность, кривую второго порядка, вектор. Из элементарных ГО, ломаных и лекальных кривых могут быть по.тученЕ.1 СГО. Конструктивный ГО — плоская  [c.166]

Основные данные для подготовки УП обработки на станке с ЧПУ содержатся в чертеже детали. Но перед вводом в ЭВМ геометрические параметры необходимо представить в закодированном виде. Для описания информации в требуемом виде используется специальный входной язык системы автоматизированной подготовки управляющих программ (САП УП). Входные языки существующих САП, таких, как APT, ЕХАРТ, СПС — ТАУ, АПТ/СМ и др., близки по структуре. Они состоят из алфавита языка инструкций определения элементарных геометрических объектов (точки, прямые линии, окружности) инструкций движения способов построения строки обхода введения технологических параметров способов разработки макроопределений и построения подпрограмм способов введения технологических циклов способов задания различных вспомогательных функций и т. п. Эти системы характеризуются тем, что все основные технологические решения даются технологом, так как входной язык ориентирован только на построение траектории перемещения инструмента, а технологические вопросы, связанные с обеспечением заданной точности и последовательности обработки, выбора инструмента и т. д., не могут быть решены на основе применения входного языка. Для автоматизации проектирования технологических процессов разработаны языки, позволяющие решать технологические задачи. Однако геометрическое описание детали, полученное с помощью этих языков, недостаточно детализировано для проектирования управляющих программ. Поэтому для комплексных автоматизированных систем конструирования и технологического проектирования, включая подготовку УП к станкам с ЧПУ, необходим многоуровневый язык кодирования геометрической информации, учитывающий специфику каждого этапа проектирования.  [c.169]


Смотреть страницы где упоминается термин Проектирование геометрическое : [c.121]    [c.42]    [c.273]    [c.854]    [c.40]    [c.68]    [c.176]    [c.228]    [c.184]    [c.292]   
Основы теории и проектирования САПР (1990) -- [ c.228 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте