Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волновые функции вращательные

Из квантовомеханических соображений (антисимметрия волновой функции l5H.. относительно перестановки двух протонов) следует, что ортоводород может существовать только в состояниях с нечетным вращательным моментом (/= 1, 3,...), а параводород—с четным (/ = 0, 2,...).  [c.504]

Третий сомножитель в этом выражении вновь дает правило отбора А/ = 1 для изменения. вращательного квантового числа. Что касается второго сомножителя, то если кривую потенциальной энергии U R) аппроксимировать параболой (упругая сила), то волновые функции Uv будут представлять собой хорошо  [c.101]


Предполагая, что свойства симметрии вращательных, колебательных и электронных волновых функций известны (см. гл. 10), рассмотрим теперь свойства симметрии ядерных и электронных спиновых функций относительно преобразований группы  [c.113]

Иногда здесь для вращательной волновой функции будет использоваться обозначение /, k, т). Другим способом записи этой функции и с другим фазовым множителем [см. уравнения (4.1.12) (4.1.15) и (4.8.6) в книге [40]] является выражение  [c.197]

Вращательные собственные функции жесткого волчка для молекул типа сферического и симметричного волчка [уравнения (8.64) или (8.67)] являются одинаковыми функциями квантовых чисел J, k, т и не зависят от вращательных постоянных молекулы назовем такую функцию волновой функцией симметричного волчка. Ее можно записать в виде  [c.198]

Так как ядерные спиновые волновые функции имеют положительную четность и полная внутренняя волновая функция может иметь положительную или отрицательную четность без ограничения, можно определить статистические веса энергетических уровней любой молекулы, пользуясь перестановочной подгруппой группы МС. Эта подгруппа получается из группы МС путем исключения всех перестановочно-инверсионных элементов. Фактически это обычный способ определения ядерно-спиновых статистических весов [122], хотя эта группа называется вращательной подгруппой молекулярной точечной группы (она будет рассмотрена в следующей главе). Поскольку при изучении молекулы определяется симметрия ровибронных уровней в группе МС, целесообразно использовать эту же симметрию для определения статистических весов, вместо того чтобы пользоваться перестановочной подгруппой группы МС.  [c.257]

Классификация вращательных волновых функций  [c.258]

Типы симметрии Гг вращательных волновых функций молекулы ВРз в группе D3h (М)  [c.260]

Вращательные волновые функции молекулы воды для соответствия осей Р являются линейными комбинациями вращательных волновых функций симметричного волчка /, ka, т), а для  [c.261]

Типы симметрии вращательных волновых функций молекулы метана в группе Td (М) в зависимости от квантового числа J D  [c.267]

Классификация вращательных волновых функций с полуцелым J  [c.288]

Типы симметрии вращательных волновых функций I, р, т ) для молекулы СНз в группе 1) Dsh (М)  [c.292]

С целью упрощения уравнений рассмотрим классификацию по симметрии колебательно-вращательных волновых функций основного электронного состояния Л = О молекулы H N. В этом частном случае можно довольно легко проследить связь между группой МС и молекулярной точечной группой.  [c.369]


Базисные колебательно-вращательные волновые функции для изоморфного гамильтониана молекулы H N в основном электронном состоянии равны  [c.369]

Шредингера на отдельные уравнения для каждого электрона, а электронные волновые функции при этом представляются в виде произведений одноэлектронных молекулярных орбиталей. При решении колебательно-вращательного уравнения Шредингера используются приближения жесткого волчка и гармонического осциллятора. Приближенное колебательно-вращательное уравнение получается разделенным, и каждая из собственных функций является произведением врай1,ательной волновой функции, зависящей от трех переменных, и колебательной волновой функции, которая в свою очередь является произведением волновых функций 3N — 6) гармонических осцилляторов, где М — число ядер в молекуле [для линейной молекулы вращательная волновая функция зависит от двух координат, а колебательная волновая функция — от (ЗЛ — 5) координат]. Все эти приближения принимаются феноменологически, исходя из свойств молекул, а не из абстрактного математического анализа имеющихся дифференциальных уравнений в частных производных.  [c.131]

Для получения более точного решения уравнения (7.1) косвенным методом необходимо внести поправки в эти приближения. Поправки, связанные с влиянием ангармоничности, центробежного искажения и кориолисова взаимодействия при решении колебательно-вращательной задачи обычно учитываются методом возмущений, а корреляция электронов при решении электронной задачи — вариационным методом. В конечном счете должны быть учтены также поправки, возникающие из-за нарушения приближения Бориа — Оппенгеймера. Отметим, что для целей классификации молекулярных уровней энергии по тинам симметрии важен вид приближенных волновых функций, поскольку из свойств преобразования этих функций устанавливается тип симметрии уровня энергии.  [c.131]

В приближении Борна — Оппенгеймера решение (3/ — 3)-мер-пого ровибронного уравнения Шредиигера (8.1) сводится к решению двух дифференциальных уравнений электронного уравнения Шредингера (8.2), включаюш,его 3 электронных координат, и колебательно-вращательного уравнения Шредингера (8.5), включающего 3N — 3) ядерных координат. Аппроксимируем каждое из этих уравнений так, чтобы они свелись к отдельным разрешимым дифференциальным уравнениям в частных производных, и получим приближенные электронные и колебательно-вращательные волновые функции Ф (или Фео) и Ф%.  [c.186]

Выражения для Т, 71 и 71 через углы Эйлера зависят от выбора соответствия осей а, Ь и с осям х, у и z на рис. 7.1. Независимо от используемого соответствия путь решения вращательного уравнения Шредингера заключается в составлении матрицы гамильтониана на базисе волновых функций симметричного волчка и ее приведении к диагональному виду для получения энергий и волновых функций. Волновые функции получаются в виде линейной комбинации волновых функций симметричного волчка с коэффицентами, зависящими от Ле, Be и Се. Продемонстрируем этот метод, пользуясь соответствием Г, а результаты, получаемые при использовании соответствия ИК, кратко обсудим в конце этого раздела. Для соответствия I гамильтониан асимметричного волчка равен  [c.204]

В результате применения приближения Борна — Оппенгеймера, использования электронных орбитальных функций в виде МО ЛКАО в самосогласованном поле (ССП) и приближения жесткого волчка и гармонического осциллятора для колебательно-вращательного гамильтониана получены полезные приближенные ровибронные волновые функции. Такие функции представляются в виде произведения вращательных колебательных и электронных орбитальных волновых функций Фг, Фу и Фео соответственно. В соотношении (8.111) Фг дается для молекулы типа симметричного или сферического волчка, а линейная комбинация таких функций определяет Фг для молекул типа асимметричного волчка. Функция Фу является произведением функций гармонических осцилляторов, а Фео — произведением молекулярных орбитальных функций, определяемых по методу ЛКАО. В гл. 10 будет показано, как эти функции можно классифицировать по типам симметрии, а в гл. 11 рассматриваются отклонения от различных принятых здесь приближений.  [c.220]


Чтобы попять, что такое конфигурационное вырождение и как оно возникает при наличии симметрически-эквивалентных равновесных ядерпых конфигураций, достаточно провести качественное рассмотрение решения колебательно-вращательного уравнения Шредингера. Для молекулы метана можно выбрать в качестве равновесной конфигурацию А или С (на рис. 9.2), чтобы определить оси Эккарта (х, г/, г), а следовательно, углы Эйлера и колебательные смещения Да,-. В зависимости от выбора конфигурации А или С получаем колебательно-вращательные волновые функции и энергии Еа либо с и f , где п = 1, 2, 3,. .. для последовательных собственных состояний. Если потенциальный барьер между минимумами Л и С потенциальной кривой Vn очень высок (как в случае метана), то волновые функции и локализованы соответственно в минимуме Лив мини-  [c.224]

До сих пор в этой главе группа МС определялась для классификации колебательно-вращательных уровней одного электронного состояния молекулы. Электронные волновые функции молекулы зависят от координат ядер, и для отдельного электронного состояния электронную волновую функцию, а следовательно и ровибронные волновые функции, можно классифицировать в группе МС этого электронного состояния. Иногда бывает необходимо рассмотреть ровибронные уровни более одного электронного состояния, например когда надо выяснить вопрос о взаимодействии между ровиброниыми уровнями, принадлежащими разным электронным состояниям, или рассмотреть электрические дипольные переходы между электронными состояниями. В таких случаях следует обобщить определение группы МС так, чтобы она обеспечивала совместную классификацию ровнбронных уровней более одного электронного состояния.  [c.245]

Для классификации вращательных, колебательных и электронных волновых функций молекулы можно использовать полную перестановочно-инверсионную группу ядер (ППИЯ). Неприводимые представления этой группы являются точными типами симметрии для ровиброниых состояний. Однако для  [c.246]

Типы симметрии Гг вращательных волновых функций молекулы СНзР в группе симметрии 3V (М) 1)  [c.260]

Симметрия функций асимметричного волчка для молекулы грамс-СгНгРг, полученная с помощью этих результатов, представлена в табл. 10.13. Заметим, что, хотя группа 2h(M) имеет четыре неприводимых представления, для вран1ательных волновых функций имеются только два возможных типа симметрии. Это обусловлено тем, что вращательные волновые функции инвариантны относительно операции (12) (34) (56) . Аналогично  [c.266]

Определение типов симметрии вращательных волновых функций молекулы для полуцелых значений вращательных квантовых чисел ранее не обсуждалось, за исключением приведения типов симметрии группы К(М) теперь мы перейдем к рещепию этой задачи с использованием групп МС.  [c.288]

Рассмотрена классификация ровиброниых волновых функций молекулы по типам симметрии группы МС с использованием приближений жесткого волчка, гармонического осциллятора, ЛКАОМО для вращательно-колебательных и электронных орбитальных состояний. Определены также типы симметрии электронных спиновых функций для случаев Гунда (а) и (б) и введено понятие спиновых двойных групп для групп МС. Дано объяснение, почему классификация вращательных волновых функций с полуцелыми вращательными квантовыми числами требует использования спиновой двойной группы. С использованием группы МС определены типы симметрии ядерных спиновых функций, полной внутренней волновой функции Ф, а также ядерные спиновые статистические веса энергетических уровней.  [c.293]

Для вращательных состояний молекулы типа жесткого симметричного волчка число К является точным квантовым числом, однако для колебательно-вращательных или ровибронных состояний оно является приближенным квантовым числом. Это квантовое число теряет смысл за счет эффектов центробежного искажения и кориолисова взаимодействия. Так как гамильтониан молекулы коммутирует с операцией обращения времени (которая переводит любую волновую функцию в ее комплексносопряженную см. гл. 6), каждая собственная функция всегда содержит суммы или разность собственных функций с k = К н k == —К. Поэтому энергетические уровни могут быть классифицированы по значениям положительного квантового числа К, а не квантового числа k, получающего положительные и отрицательные значения. Квантовое число J является приближенным для полных внутренних состояний Е и теряет смысл, например, при учете взаимодействия Япзг, зависящего от ядерного спина. Однако число F является точным квантовым числом для изолированной молекулы в свободном пространстве.  [c.309]

Такие возмущения в пределах одного электронного состоя-пия возникают за счет членов, входящих в выражения (11.20) — (11.22). В базисе волновых функций жесткого волчка и гармонического осциллятора члены возмущения сменшвают состояния в соответствии с определенными правилами отбора по колебательным квантовым числам Vi, U (для дважды вырожденных колебаний), п,- (для трижды вырожденных колебаний) и по вра-нштсльным квантовым числам К (для симметричных волчков) или Ка и Кс (для асимметричных волчков). Мы рассмотрим здесь эти правила отбора, а также возмущения, при учете которых приближенные квантовые числа теряют смысл. Отметим, что при учете этих возмущений сохраняются только колебательно-вращательные типы симметрии Trv  [c.329]


Приближенные квантовые число G и ( 1). Центробежное искажение и кориолисово взаимодействие в симметричном волчке могут смешивать состояния с различными значениями К [см., например, правила отбора (11.105), (11.108)]. Если эти взаимодействия сильные, то число /С теряет смысл даже как приближенное квантовое число. Однако па основании принципов симметрии можно ввести другие квантовые числа G и Gv для классификации колебательно-вращательных состояний молекулы типа симл етричного волчка [54]. Введем эти квантовые числа для частного случая молекулы СНзР. Полную колебательно-вращательную волновую функцию в нулевом приближении можно записать в виде  [c.332]

Если равновесные конфигурации для молекулы в двух электронных состояниях Фе И Фе различны, ТО оривнтация осей (x,y,z), закрепленных в молекуле, для этих двух состояний при данном мгновенном расположении ядер также может быть различной. Это обусловлено тем, что ориентация осей определяется из условий Эккарта, которые зависят от равновесной геометрии молекулы [см. (7.127) — (7.135)]. Такой эффект называется поворотом осей [60]. Поэтому для однозначного определения ориентации осей (х, у, г) и, следовательно, величин Kat и Ма в (11.152) мы должны в качестве равновесной геометрии молекулы, которая может быть использована в условиях Эккарта, выбрать равновесную конфигурацию молекулы в одном из электронных состояний. Тогда вращательные волновые функции другого электронного состояния следует выразить через вращательные волновые функции, зависящие от углов Эйлера, определенных относительно новых осей, так как матричные элементы ЯаЕмогут содержать только один набор углов Эйлера, В результате становятся разрешенными некоторые лишние вращательные переходы, называемые переходами с поворотом осей, которые не удовлетворяют правилам отбора по К (или Ка и Кс), выведенным ниже. Этот эффект следует учитывать также при сравнении экспериментальных значений вибропных матричных элементов операторов Ма с их значениями, вычисляемыми из первых принципов. Переходы с поворотом осей обычно слабые и наблюдаются редко.  [c.348]

Колебательно-вращательные волновые функции H N из (12.19) можно классифицировать по типам симметрии группы МС oov(M). Такая возможность является следствием того, что все координаты 0, ф, а , Qi, Q2 и Q3, входящие в волновые функции, под действием элементов группы oov(M) преобразуются вполне определенным образом. Под действием операции Е эти координаты преобразуются следующим образом [см. рис. 12.2  [c.370]


Смотреть страницы где упоминается термин Волновые функции вращательные : [c.226]    [c.100]    [c.100]    [c.101]    [c.180]    [c.11]    [c.184]    [c.197]    [c.248]    [c.257]    [c.266]    [c.274]    [c.275]    [c.287]    [c.288]    [c.291]    [c.326]    [c.358]    [c.370]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.73 , c.91 , c.110 , c.130 , c.208 , c.244 ]



ПОИСК



Волновая функция

Классификация вращательных волновых функций

Классификация вращательных волновых функций с полуцелым

Симметризация волновых функций 449Симметрия матрицы вращательная

Электронно-колебателыю-вращательные волновые функции



© 2025 Mash-xxl.info Реклама на сайте